Extensions 1→N→G→Q→1 with N=C14 and Q=C2xDic3

Direct product G=NxQ with N=C14 and Q=C2xDic3
dρLabelID
Dic3xC2xC14336Dic3xC2xC14336,192

Semidirect products G=N:Q with N=C14 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C14:1(C2xDic3) = C2xDic3xD7φ: C2xDic3/Dic3C2 ⊆ Aut C14168C14:1(C2xDic3)336,151
C14:2(C2xDic3) = C22xDic21φ: C2xDic3/C2xC6C2 ⊆ Aut C14336C14:2(C2xDic3)336,202

Non-split extensions G=N.Q with N=C14 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C14.1(C2xDic3) = D7xC3:C8φ: C2xDic3/Dic3C2 ⊆ Aut C141684C14.1(C2xDic3)336,23
C14.2(C2xDic3) = C28.32D6φ: C2xDic3/Dic3C2 ⊆ Aut C141684C14.2(C2xDic3)336,26
C14.3(C2xDic3) = Dic3xDic7φ: C2xDic3/Dic3C2 ⊆ Aut C14336C14.3(C2xDic3)336,41
C14.4(C2xDic3) = D14:Dic3φ: C2xDic3/Dic3C2 ⊆ Aut C14168C14.4(C2xDic3)336,42
C14.5(C2xDic3) = C42.Q8φ: C2xDic3/Dic3C2 ⊆ Aut C14336C14.5(C2xDic3)336,45
C14.6(C2xDic3) = C2xC21:C8φ: C2xDic3/C2xC6C2 ⊆ Aut C14336C14.6(C2xDic3)336,95
C14.7(C2xDic3) = C84.C4φ: C2xDic3/C2xC6C2 ⊆ Aut C141682C14.7(C2xDic3)336,96
C14.8(C2xDic3) = C4xDic21φ: C2xDic3/C2xC6C2 ⊆ Aut C14336C14.8(C2xDic3)336,97
C14.9(C2xDic3) = C84:C4φ: C2xDic3/C2xC6C2 ⊆ Aut C14336C14.9(C2xDic3)336,99
C14.10(C2xDic3) = C42.38D4φ: C2xDic3/C2xC6C2 ⊆ Aut C14168C14.10(C2xDic3)336,105
C14.11(C2xDic3) = C14xC3:C8central extension (φ=1)336C14.11(C2xDic3)336,79
C14.12(C2xDic3) = C7xC4.Dic3central extension (φ=1)1682C14.12(C2xDic3)336,80
C14.13(C2xDic3) = Dic3xC28central extension (φ=1)336C14.13(C2xDic3)336,81
C14.14(C2xDic3) = C7xC4:Dic3central extension (φ=1)336C14.14(C2xDic3)336,83
C14.15(C2xDic3) = C7xC6.D4central extension (φ=1)168C14.15(C2xDic3)336,89

׿
x
:
Z
F
o
wr
Q
<