Extensions 1→N→G→Q→1 with N=C3xC30 and Q=C4

Direct product G=NxQ with N=C3xC30 and Q=C4
dρLabelID
C6xC60360C6xC60360,115

Semidirect products G=N:Q with N=C3xC30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC30):1C4 = C2xC32:F5φ: C4/C1C4 ⊆ Aut C3xC30604+(C3xC30):1C4360,150
(C3xC30):2C4 = C2xC32:3F5φ: C4/C1C4 ⊆ Aut C3xC3090(C3xC30):2C4360,147
(C3xC30):3C4 = C6xC3:F5φ: C4/C1C4 ⊆ Aut C3xC30604(C3xC30):3C4360,146
(C3xC30):4C4 = C3xC6xF5φ: C4/C1C4 ⊆ Aut C3xC3090(C3xC30):4C4360,145
(C3xC30):5C4 = C10xC32:C4φ: C4/C1C4 ⊆ Aut C3xC30604(C3xC30):5C4360,148
(C3xC30):6C4 = C2xC32:Dic5φ: C4/C1C4 ⊆ Aut C3xC30604(C3xC30):6C4360,149
(C3xC30):7C4 = C2xC3:Dic15φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30):7C4360,113
(C3xC30):8C4 = C6xDic15φ: C4/C2C2 ⊆ Aut C3xC30120(C3xC30):8C4360,103
(C3xC30):9C4 = C3xC6xDic5φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30):9C4360,93
(C3xC30):10C4 = Dic3xC30φ: C4/C2C2 ⊆ Aut C3xC30120(C3xC30):10C4360,98
(C3xC30):11C4 = C10xC3:Dic3φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30):11C4360,108

Non-split extensions G=N.Q with N=C3xC30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC30).1C4 = (C3xC6).F5φ: C4/C1C4 ⊆ Aut C3xC301204-(C3xC30).1C4360,57
(C3xC30).2C4 = C30.Dic3φ: C4/C1C4 ⊆ Aut C3xC30360(C3xC30).2C4360,54
(C3xC30).3C4 = C3xC15:C8φ: C4/C1C4 ⊆ Aut C3xC301204(C3xC30).3C4360,53
(C3xC30).4C4 = C32xC5:C8φ: C4/C1C4 ⊆ Aut C3xC30360(C3xC30).4C4360,52
(C3xC30).5C4 = C5xC32:2C8φ: C4/C1C4 ⊆ Aut C3xC301204(C3xC30).5C4360,55
(C3xC30).6C4 = (C3xC15):9C8φ: C4/C1C4 ⊆ Aut C3xC301204(C3xC30).6C4360,56
(C3xC30).7C4 = C60.S3φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30).7C4360,37
(C3xC30).8C4 = C3xC15:3C8φ: C4/C2C2 ⊆ Aut C3xC301202(C3xC30).8C4360,35
(C3xC30).9C4 = C32xC5:2C8φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30).9C4360,33
(C3xC30).10C4 = C15xC3:C8φ: C4/C2C2 ⊆ Aut C3xC301202(C3xC30).10C4360,34
(C3xC30).11C4 = C5xC32:4C8φ: C4/C2C2 ⊆ Aut C3xC30360(C3xC30).11C4360,36

׿
x
:
Z
F
o
wr
Q
<