Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C3:S3

Direct product G=NxQ with N=C2xC10 and Q=C3:S3
dρLabelID
C3:S3xC2xC10180C3:S3xC2xC10360,160

Semidirect products G=N:Q with N=C2xC10 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC10):1(C3:S3) = C5xC3:S4φ: C3:S3/C3S3 ⊆ Aut C2xC10606(C2xC10):1(C3:S3)360,140
(C2xC10):2(C3:S3) = A4:D15φ: C3:S3/C3S3 ⊆ Aut C2xC10606+(C2xC10):2(C3:S3)360,141
(C2xC10):3(C3:S3) = C5xC32:7D4φ: C3:S3/C32C2 ⊆ Aut C2xC10180(C2xC10):3(C3:S3)360,109
(C2xC10):4(C3:S3) = C62:D5φ: C3:S3/C32C2 ⊆ Aut C2xC10180(C2xC10):4(C3:S3)360,114
(C2xC10):5(C3:S3) = C22xC3:D15φ: C3:S3/C32C2 ⊆ Aut C2xC10180(C2xC10):5(C3:S3)360,161

Non-split extensions G=N.Q with N=C2xC10 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC10).(C3:S3) = C2xC3:Dic15φ: C3:S3/C32C2 ⊆ Aut C2xC10360(C2xC10).(C3:S3)360,113
(C2xC10).2(C3:S3) = C10xC3:Dic3central extension (φ=1)360(C2xC10).2(C3:S3)360,108

׿
x
:
Z
F
o
wr
Q
<