Extensions 1→N→G→Q→1 with N=C2xC10 and Q=F5

Direct product G=NxQ with N=C2xC10 and Q=F5
dρLabelID
F5xC2xC1080F5xC2xC10400,214

Semidirect products G=N:Q with N=C2xC10 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2xC10):1F5 = C102:C4φ: F5/C5C4 ⊆ Aut C2xC10100(C2xC10):1F5400,155
(C2xC10):2F5 = C102:4C4φ: F5/C5C4 ⊆ Aut C2xC10204+(C2xC10):2F5400,162
(C2xC10):3F5 = C22xC5:F5φ: F5/C5C4 ⊆ Aut C2xC10100(C2xC10):3F5400,216
(C2xC10):4F5 = C22xC52:C4φ: F5/C5C4 ⊆ Aut C2xC1040(C2xC10):4F5400,217
(C2xC10):5F5 = C5xC22:F5φ: F5/D5C2 ⊆ Aut C2xC10404(C2xC10):5F5400,141
(C2xC10):6F5 = D10.D10φ: F5/D5C2 ⊆ Aut C2xC10404(C2xC10):6F5400,148
(C2xC10):7F5 = C22xD5.D5φ: F5/D5C2 ⊆ Aut C2xC1080(C2xC10):7F5400,215

Non-split extensions G=N.Q with N=C2xC10 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2xC10).1F5 = C2xC25:C8φ: F5/C5C4 ⊆ Aut C2xC10400(C2xC10).1F5400,32
(C2xC10).2F5 = C25:M4(2)φ: F5/C5C4 ⊆ Aut C2xC102004-(C2xC10).2F5400,33
(C2xC10).3F5 = D25.D4φ: F5/C5C4 ⊆ Aut C2xC101004+(C2xC10).3F5400,34
(C2xC10).4F5 = C22xC25:C4φ: F5/C5C4 ⊆ Aut C2xC10100(C2xC10).4F5400,53
(C2xC10).5F5 = C2xC52:4C8φ: F5/C5C4 ⊆ Aut C2xC10400(C2xC10).5F5400,153
(C2xC10).6F5 = C52:13M4(2)φ: F5/C5C4 ⊆ Aut C2xC10200(C2xC10).6F5400,154
(C2xC10).7F5 = C2xC52:5C8φ: F5/C5C4 ⊆ Aut C2xC1080(C2xC10).7F5400,160
(C2xC10).8F5 = C52:14M4(2)φ: F5/C5C4 ⊆ Aut C2xC10404-(C2xC10).8F5400,161
(C2xC10).9F5 = C5xC22.F5φ: F5/D5C2 ⊆ Aut C2xC10404(C2xC10).9F5400,140
(C2xC10).10F5 = C2xC52:3C8φ: F5/D5C2 ⊆ Aut C2xC1080(C2xC10).10F5400,146
(C2xC10).11F5 = C102.C4φ: F5/D5C2 ⊆ Aut C2xC10404(C2xC10).11F5400,147
(C2xC10).12F5 = C10xC5:C8central extension (φ=1)80(C2xC10).12F5400,139

׿
x
:
Z
F
o
wr
Q
<