Extensions 1→N→G→Q→1 with N=C2xD52 and Q=C2

Direct product G=NxQ with N=C2xD52 and Q=C2
dρLabelID
C22xD52208C2^2xD52416,214

Semidirect products G=N:Q with N=C2xD52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD52):1C2 = C4:D52φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):1C2416,95
(C2xD52):2C2 = C22:D52φ: C2/C1C2 ⊆ Out C2xD52104(C2xD52):2C2416,103
(C2xD52):3C2 = D26:D4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):3C2416,105
(C2xD52):4C2 = C4:2D52φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):4C2416,116
(C2xD52):5C2 = C2xD104φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):5C2416,124
(C2xD52):6C2 = C52:7D4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):6C2416,151
(C2xD52):7C2 = C8:D26φ: C2/C1C2 ⊆ Out C2xD521044+(C2xD52):7C2416,129
(C2xD52):8C2 = C2xD4:D13φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):8C2416,152
(C2xD52):9C2 = C52:D4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):9C2416,161
(C2xD52):10C2 = D4:D26φ: C2/C1C2 ⊆ Out C2xD521044+(C2xD52):10C2416,170
(C2xD52):11C2 = C2xD4xD13φ: C2/C1C2 ⊆ Out C2xD52104(C2xD52):11C2416,216
(C2xD52):12C2 = C2xD52:C2φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52):12C2416,220
(C2xD52):13C2 = D4:8D26φ: C2/C1C2 ⊆ Out C2xD521044+(C2xD52):13C2416,223
(C2xD52):14C2 = C2xD52:5C2φ: trivial image208(C2xD52):14C2416,215

Non-split extensions G=N.Q with N=C2xD52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD52).1C2 = D52:5C4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).1C2416,28
(C2xD52).2C2 = D26.D4φ: C2/C1C2 ⊆ Out C2xD521044+(C2xD52).2C2416,74
(C2xD52).3C2 = C4.D52φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).3C2416,96
(C2xD52).4C2 = D26.13D4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).4C2416,115
(C2xD52).5C2 = C2xC104:C2φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).5C2416,123
(C2xD52).6C2 = D52:6C4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).6C2416,16
(C2xD52).7C2 = C52.46D4φ: C2/C1C2 ⊆ Out C2xD521044+(C2xD52).7C2416,30
(C2xD52).8C2 = D52:8C4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).8C2416,114
(C2xD52).9C2 = C2xQ8:D13φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).9C2416,162
(C2xD52).10C2 = C52.23D4φ: C2/C1C2 ⊆ Out C2xD52208(C2xD52).10C2416,168
(C2xD52).11C2 = C4xD52φ: trivial image208(C2xD52).11C2416,94

׿
x
:
Z
F
o
wr
Q
<