Extensions 1→N→G→Q→1 with N=C13 and Q=C2xM4(2)

Direct product G=NxQ with N=C13 and Q=C2xM4(2)
dρLabelID
M4(2)xC26208M4(2)xC26416,191

Semidirect products G=N:Q with N=C13 and Q=C2xM4(2)
extensionφ:Q→Aut NdρLabelID
C13:1(C2xM4(2)) = C2xC52.C4φ: C2xM4(2)/C2xC4C4 ⊆ Aut C13208C13:1(C2xM4(2))416,200
C13:2(C2xM4(2)) = D13:M4(2)φ: C2xM4(2)/C2xC4C4 ⊆ Aut C131044C13:2(C2xM4(2))416,201
C13:3(C2xM4(2)) = C2xC13:M4(2)φ: C2xM4(2)/C23C4 ⊆ Aut C13208C13:3(C2xM4(2))416,210
C13:4(C2xM4(2)) = C2xC8:D13φ: C2xM4(2)/C2xC8C2 ⊆ Aut C13208C13:4(C2xM4(2))416,121
C13:5(C2xM4(2)) = M4(2)xD13φ: C2xM4(2)/M4(2)C2 ⊆ Aut C131044C13:5(C2xM4(2))416,127
C13:6(C2xM4(2)) = C2xC52.4C4φ: C2xM4(2)/C22xC4C2 ⊆ Aut C13208C13:6(C2xM4(2))416,142


׿
x
:
Z
F
o
wr
Q
<