Copied to
clipboard

G = D18.A4order 432 = 24·33

The non-split extension by D18 of A4 acting via A4/C22=C3

non-abelian, soluble

Aliases: D18.A4, D9:SL2(F3), C6.3(S3xA4), (Q8xC9):4C6, (Q8xD9):2C3, C18.A4:2C2, C18.2(C2xA4), Q8:2(C9:C6), C9:(C2xSL2(F3)), C2.3(D9:A4), C3.1(S3xSL2(F3)), (C3xSL2(F3)).2S3, (C3xQ8).13(C3xS3), SmallGroup(432,263)

Series: Derived Chief Lower central Upper central

C1C2Q8xC9 — D18.A4
C1C3C6C18Q8xC9C18.A4 — D18.A4
Q8xC9 — D18.A4
C1C2

Generators and relations for D18.A4
 G = < a,b,c,d,e | a18=b2=e3=1, c2=d2=a9, bab=a-1, ac=ca, ad=da, eae-1=a13, bc=cb, bd=db, ebe-1=a12b, dcd-1=a9c, ece-1=a9cd, ede-1=c >

Subgroups: 419 in 57 conjugacy classes, 16 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2xC4, Q8, Q8, C9, C9, C32, Dic3, C12, D6, C2xC6, C2xQ8, D9, C18, C18, C3xS3, C3xC6, SL2(F3), Dic6, C4xS3, C3xQ8, 3- 1+2, Dic9, C36, D18, S3xC6, C2xSL2(F3), S3xQ8, C9:C6, C2x3- 1+2, Q8:C9, Dic18, C4xD9, Q8xC9, C3xSL2(F3), C2xC9:C6, Q8xD9, S3xSL2(F3), C18.A4, D18.A4
Quotients: C1, C2, C3, S3, C6, A4, C3xS3, SL2(F3), C2xA4, C2xSL2(F3), C9:C6, S3xA4, S3xSL2(F3), D9:A4, D18.A4

Character table of D18.A4

 class 12A2B2C3A3B3C4A4B6A6B6C6D6E6F6G9A9B9C1218A18B18C36A36B36C
 size 1199212126542121236363636624241262424121212
ρ111111111111111111111111111    trivial
ρ211-1-11111-1111-1-1-1-11111111111    linear of order 2
ρ311-1-11ζ32ζ31-11ζ3ζ32ζ6ζ65ζ6ζ651ζ32ζ311ζ32ζ3111    linear of order 6
ρ411-1-11ζ3ζ321-11ζ32ζ3ζ65ζ6ζ65ζ61ζ3ζ3211ζ3ζ32111    linear of order 6
ρ511111ζ32ζ3111ζ3ζ32ζ32ζ3ζ32ζ31ζ32ζ311ζ32ζ3111    linear of order 3
ρ611111ζ3ζ32111ζ32ζ3ζ3ζ32ζ3ζ321ζ3ζ3211ζ3ζ32111    linear of order 3
ρ72200222202220000-1-1-12-1-1-1-1-1-1    orthogonal lifted from S3
ρ82-2-222-1-100-21111-1-12-1-10-211000    symplectic lifted from SL2(F3), Schur index 2
ρ92-22-22-1-100-211-1-1112-1-10-211000    symplectic lifted from SL2(F3), Schur index 2
ρ102-22-22ζ65ζ600-2ζ32ζ3ζ65ζ6ζ3ζ322ζ65ζ60-2ζ3ζ32000    complex lifted from SL2(F3)
ρ1122002-1--3-1+-3202-1+-3-1--30000-1ζ6ζ652-1ζ6ζ65-1-1-1    complex lifted from C3xS3
ρ1222002-1+-3-1--3202-1--3-1+-30000-1ζ65ζ62-1ζ65ζ6-1-1-1    complex lifted from C3xS3
ρ132-2-222ζ65ζ600-2ζ32ζ3ζ3ζ32ζ65ζ62ζ65ζ60-2ζ3ζ32000    complex lifted from SL2(F3)
ρ142-2-222ζ6ζ6500-2ζ3ζ32ζ32ζ3ζ6ζ652ζ6ζ650-2ζ32ζ3000    complex lifted from SL2(F3)
ρ152-22-22ζ6ζ6500-2ζ3ζ32ζ6ζ65ζ32ζ32ζ6ζ650-2ζ32ζ3000    complex lifted from SL2(F3)
ρ1633-3-3300-113000000300-1300-1-1-1    orthogonal lifted from C2xA4
ρ173333300-1-13000000300-1300-1-1-1    orthogonal lifted from A4
ρ184-4004-2-200-4220000-21102-1-1000    symplectic lifted from S3xSL2(F3), Schur index 2
ρ194-40041--31+-300-4-1--3-1+-30000-2ζ3ζ3202ζ65ζ6000    complex lifted from S3xSL2(F3)
ρ204-40041+-31--300-4-1+-3-1--30000-2ζ32ζ302ζ6ζ65000    complex lifted from S3xSL2(F3)
ρ216600-30060-3000000000-3000000    orthogonal lifted from C9:C6
ρ226600600-206000000-300-2-300111    orthogonal lifted from S3xA4
ρ236600-300-20-3000000000100095+2ζ9497+2ζ9298+2ζ9    orthogonal lifted from D9:A4
ρ246600-300-20-3000000000100098+2ζ995+2ζ9497+2ζ92    orthogonal lifted from D9:A4
ρ256600-300-20-3000000000100097+2ζ9298+2ζ995+2ζ94    orthogonal lifted from D9:A4
ρ2612-1200-6000060000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of D18.A4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 18)(11 17)(12 16)(13 15)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)(25 27)(34 36)(37 45)(38 44)(39 43)(40 42)(46 54)(47 53)(48 52)(49 51)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(68 72)(69 71)
(1 22 10 31)(2 23 11 32)(3 24 12 33)(4 25 13 34)(5 26 14 35)(6 27 15 36)(7 28 16 19)(8 29 17 20)(9 30 18 21)(37 66 46 57)(38 67 47 58)(39 68 48 59)(40 69 49 60)(41 70 50 61)(42 71 51 62)(43 72 52 63)(44 55 53 64)(45 56 54 65)
(1 46 10 37)(2 47 11 38)(3 48 12 39)(4 49 13 40)(5 50 14 41)(6 51 15 42)(7 52 16 43)(8 53 17 44)(9 54 18 45)(19 63 28 72)(20 64 29 55)(21 65 30 56)(22 66 31 57)(23 67 32 58)(24 68 33 59)(25 69 34 60)(26 70 35 61)(27 71 36 62)
(2 8 14)(3 15 9)(5 11 17)(6 18 12)(19 43 72)(20 50 67)(21 39 62)(22 46 57)(23 53 70)(24 42 65)(25 49 60)(26 38 55)(27 45 68)(28 52 63)(29 41 58)(30 48 71)(31 37 66)(32 44 61)(33 51 56)(34 40 69)(35 47 64)(36 54 59)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(34,36)(37,45)(38,44)(39,43)(40,42)(46,54)(47,53)(48,52)(49,51)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(68,72)(69,71), (1,22,10,31)(2,23,11,32)(3,24,12,33)(4,25,13,34)(5,26,14,35)(6,27,15,36)(7,28,16,19)(8,29,17,20)(9,30,18,21)(37,66,46,57)(38,67,47,58)(39,68,48,59)(40,69,49,60)(41,70,50,61)(42,71,51,62)(43,72,52,63)(44,55,53,64)(45,56,54,65), (1,46,10,37)(2,47,11,38)(3,48,12,39)(4,49,13,40)(5,50,14,41)(6,51,15,42)(7,52,16,43)(8,53,17,44)(9,54,18,45)(19,63,28,72)(20,64,29,55)(21,65,30,56)(22,66,31,57)(23,67,32,58)(24,68,33,59)(25,69,34,60)(26,70,35,61)(27,71,36,62), (2,8,14)(3,15,9)(5,11,17)(6,18,12)(19,43,72)(20,50,67)(21,39,62)(22,46,57)(23,53,70)(24,42,65)(25,49,60)(26,38,55)(27,45,68)(28,52,63)(29,41,58)(30,48,71)(31,37,66)(32,44,61)(33,51,56)(34,40,69)(35,47,64)(36,54,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(34,36)(37,45)(38,44)(39,43)(40,42)(46,54)(47,53)(48,52)(49,51)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(68,72)(69,71), (1,22,10,31)(2,23,11,32)(3,24,12,33)(4,25,13,34)(5,26,14,35)(6,27,15,36)(7,28,16,19)(8,29,17,20)(9,30,18,21)(37,66,46,57)(38,67,47,58)(39,68,48,59)(40,69,49,60)(41,70,50,61)(42,71,51,62)(43,72,52,63)(44,55,53,64)(45,56,54,65), (1,46,10,37)(2,47,11,38)(3,48,12,39)(4,49,13,40)(5,50,14,41)(6,51,15,42)(7,52,16,43)(8,53,17,44)(9,54,18,45)(19,63,28,72)(20,64,29,55)(21,65,30,56)(22,66,31,57)(23,67,32,58)(24,68,33,59)(25,69,34,60)(26,70,35,61)(27,71,36,62), (2,8,14)(3,15,9)(5,11,17)(6,18,12)(19,43,72)(20,50,67)(21,39,62)(22,46,57)(23,53,70)(24,42,65)(25,49,60)(26,38,55)(27,45,68)(28,52,63)(29,41,58)(30,48,71)(31,37,66)(32,44,61)(33,51,56)(34,40,69)(35,47,64)(36,54,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,18),(11,17),(12,16),(13,15),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28),(25,27),(34,36),(37,45),(38,44),(39,43),(40,42),(46,54),(47,53),(48,52),(49,51),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(68,72),(69,71)], [(1,22,10,31),(2,23,11,32),(3,24,12,33),(4,25,13,34),(5,26,14,35),(6,27,15,36),(7,28,16,19),(8,29,17,20),(9,30,18,21),(37,66,46,57),(38,67,47,58),(39,68,48,59),(40,69,49,60),(41,70,50,61),(42,71,51,62),(43,72,52,63),(44,55,53,64),(45,56,54,65)], [(1,46,10,37),(2,47,11,38),(3,48,12,39),(4,49,13,40),(5,50,14,41),(6,51,15,42),(7,52,16,43),(8,53,17,44),(9,54,18,45),(19,63,28,72),(20,64,29,55),(21,65,30,56),(22,66,31,57),(23,67,32,58),(24,68,33,59),(25,69,34,60),(26,70,35,61),(27,71,36,62)], [(2,8,14),(3,15,9),(5,11,17),(6,18,12),(19,43,72),(20,50,67),(21,39,62),(22,46,57),(23,53,70),(24,42,65),(25,49,60),(26,38,55),(27,45,68),(28,52,63),(29,41,58),(30,48,71),(31,37,66),(32,44,61),(33,51,56),(34,40,69),(35,47,64),(36,54,59)]])

Matrix representation of D18.A4 in GL10(F37)

03600000000
1100000000
00036000000
0011000000
00000036100
00000036000
0000363636363635
00000000136
0000001001
0000101001
,
0100000000
1000000000
0001000000
0010000000
00000036000
00000036100
00003600000
00003610000
00000360363636
0000101001
,
0010000000
0001000000
36000000000
03600000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
110100000000
011010000000
100260000000
010026000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
100260000000
010026000000
0000100000
0000010000
00000003600
00000013600
0000000101
000036363603636

G:=sub<GL(10,GF(37))| [0,1,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,0,0,0,0,0,0,36,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,36,36,0,1,1,0,0,0,0,1,0,36,0,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,0,0,35,36,1,1],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,36,36,0,1,0,0,0,0,0,0,0,1,36,0,0,0,0,0,36,36,0,0,0,1,0,0,0,0,0,1,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,36,1],[0,0,36,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[11,0,10,0,0,0,0,0,0,0,0,11,0,10,0,0,0,0,0,0,10,0,26,0,0,0,0,0,0,0,0,10,0,26,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,10,0,0,0,0,0,0,0,0,1,0,10,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,36,0,0,0,0,0,1,0,0,0,36,0,0,0,0,0,0,0,1,0,36,0,0,0,0,0,0,36,36,1,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,36] >;

D18.A4 in GAP, Magma, Sage, TeX

D_{18}.A_4
% in TeX

G:=Group("D18.A4");
// GroupNames label

G:=SmallGroup(432,263);
// by ID

G=gap.SmallGroup(432,263);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-3,-2,-3,198,268,94,409,192,6724,2951,452,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^18=b^2=e^3=1,c^2=d^2=a^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^13,b*c=c*b,b*d=d*b,e*b*e^-1=a^12*b,d*c*d^-1=a^9*c,e*c*e^-1=a^9*c*d,e*d*e^-1=c>;
// generators/relations

Export

Character table of D18.A4 in TeX

׿
x
:
Z
F
o
wr
Q
<