Extensions 1→N→G→Q→1 with N=C2xC4 and Q=He3:C2

Direct product G=NxQ with N=C2xC4 and Q=He3:C2
dρLabelID
C2xC4xHe3:C272C2xC4xHe3:C2432,385

Semidirect products G=N:Q with N=C2xC4 and Q=He3:C2
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(He3:C2) = C62.31D6φ: He3:C2/He3C2 ⊆ Aut C2xC472(C2xC4):1(He3:C2)432,189
(C2xC4):2(He3:C2) = C2xHe3:5D4φ: He3:C2/He3C2 ⊆ Aut C2xC472(C2xC4):2(He3:C2)432,386
(C2xC4):3(He3:C2) = C62.47D6φ: He3:C2/He3C2 ⊆ Aut C2xC4726(C2xC4):3(He3:C2)432,387

Non-split extensions G=N.Q with N=C2xC4 and Q=He3:C2
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(He3:C2) = C62.29D6φ: He3:C2/He3C2 ⊆ Aut C2xC4144(C2xC4).1(He3:C2)432,187
(C2xC4).2(He3:C2) = He3:8M4(2)φ: He3:C2/He3C2 ⊆ Aut C2xC4726(C2xC4).2(He3:C2)432,185
(C2xC4).3(He3:C2) = C62.30D6φ: He3:C2/He3C2 ⊆ Aut C2xC4144(C2xC4).3(He3:C2)432,188
(C2xC4).4(He3:C2) = C2xHe3:4Q8φ: He3:C2/He3C2 ⊆ Aut C2xC4144(C2xC4).4(He3:C2)432,384
(C2xC4).5(He3:C2) = C2xHe3:4C8central extension (φ=1)144(C2xC4).5(He3:C2)432,184
(C2xC4).6(He3:C2) = C4xHe3:3C4central extension (φ=1)144(C2xC4).6(He3:C2)432,186

׿
x
:
Z
F
o
wr
Q
<