Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C3:S3

Direct product G=NxQ with N=C2xDic3 and Q=C3:S3
dρLabelID
C2xDic3xC3:S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C2xDic3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C3:S3) = C62.78D6φ: C3:S3/C32C2 ⊆ Out C2xDic3144(C2xDic3):1(C3:S3)432,450
(C2xDic3):2(C3:S3) = C62.79D6φ: C3:S3/C32C2 ⊆ Out C2xDic372(C2xDic3):2(C3:S3)432,451
(C2xDic3):3(C3:S3) = C62.93D6φ: C3:S3/C32C2 ⊆ Out C2xDic372(C2xDic3):3(C3:S3)432,678
(C2xDic3):4(C3:S3) = C2xC33:8D4φ: C3:S3/C32C2 ⊆ Out C2xDic372(C2xDic3):4(C3:S3)432,682
(C2xDic3):5(C3:S3) = C2xC33:8(C2xC4)φ: trivial image72(C2xDic3):5(C3:S3)432,679

Non-split extensions G=N.Q with N=C2xDic3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C3:S3) = C62.80D6φ: C3:S3/C32C2 ⊆ Out C2xDic3144(C2xDic3).1(C3:S3)432,452
(C2xDic3).2(C3:S3) = C62.81D6φ: C3:S3/C32C2 ⊆ Out C2xDic3144(C2xDic3).2(C3:S3)432,453
(C2xDic3).3(C3:S3) = C62.82D6φ: C3:S3/C32C2 ⊆ Out C2xDic3144(C2xDic3).3(C3:S3)432,454
(C2xDic3).4(C3:S3) = C2xC33:4Q8φ: C3:S3/C32C2 ⊆ Out C2xDic3144(C2xDic3).4(C3:S3)432,683
(C2xDic3).5(C3:S3) = Dic3xC3:Dic3φ: trivial image144(C2xDic3).5(C3:S3)432,448

׿
x
:
Z
F
o
wr
Q
<