Extensions 1→N→G→Q→1 with N=C2xC12 and Q=C3:S3

Direct product G=NxQ with N=C2xC12 and Q=C3:S3
dρLabelID
C3:S3xC2xC12144C3:S3xC2xC12432,711

Semidirect products G=N:Q with N=C2xC12 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC12):1(C3:S3) = C3xC6.11D12φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12):1(C3:S3)432,490
(C2xC12):2(C3:S3) = C62.148D6φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12):2(C3:S3)432,506
(C2xC12):3(C3:S3) = C2xC33:12D4φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12):3(C3:S3)432,722
(C2xC12):4(C3:S3) = C62.160D6φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12):4(C3:S3)432,723
(C2xC12):5(C3:S3) = C2xC4xC33:C2φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12):5(C3:S3)432,721
(C2xC12):6(C3:S3) = C6xC12:S3φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12):6(C3:S3)432,712
(C2xC12):7(C3:S3) = C3xC12.59D6φ: C3:S3/C32C2 ⊆ Aut C2xC1272(C2xC12):7(C3:S3)432,713

Non-split extensions G=N.Q with N=C2xC12 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC12).1(C3:S3) = C6.Dic18φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).1(C3:S3)432,181
(C2xC12).2(C3:S3) = C6.11D36φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).2(C3:S3)432,183
(C2xC12).3(C3:S3) = C62.29D6φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).3(C3:S3)432,187
(C2xC12).4(C3:S3) = C62.31D6φ: C3:S3/C32C2 ⊆ Aut C2xC1272(C2xC12).4(C3:S3)432,189
(C2xC12).5(C3:S3) = C3xC6.Dic6φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).5(C3:S3)432,488
(C2xC12).6(C3:S3) = C62.146D6φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).6(C3:S3)432,504
(C2xC12).7(C3:S3) = C36:Dic3φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).7(C3:S3)432,182
(C2xC12).8(C3:S3) = C2xC12.D9φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).8(C3:S3)432,380
(C2xC12).9(C3:S3) = C2xC36:S3φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).9(C3:S3)432,382
(C2xC12).10(C3:S3) = C62.147D6φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).10(C3:S3)432,505
(C2xC12).11(C3:S3) = C2xC33:8Q8φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).11(C3:S3)432,720
(C2xC12).12(C3:S3) = C36.69D6φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).12(C3:S3)432,179
(C2xC12).13(C3:S3) = C36.70D6φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).13(C3:S3)432,383
(C2xC12).14(C3:S3) = C33:18M4(2)φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).14(C3:S3)432,502
(C2xC12).15(C3:S3) = C2xC36.S3φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).15(C3:S3)432,178
(C2xC12).16(C3:S3) = C4xC9:Dic3φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).16(C3:S3)432,180
(C2xC12).17(C3:S3) = C2xC4xC9:S3φ: C3:S3/C32C2 ⊆ Aut C2xC12216(C2xC12).17(C3:S3)432,381
(C2xC12).18(C3:S3) = C2xC33:7C8φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).18(C3:S3)432,501
(C2xC12).19(C3:S3) = C4xC33:5C4φ: C3:S3/C32C2 ⊆ Aut C2xC12432(C2xC12).19(C3:S3)432,503
(C2xC12).20(C3:S3) = He3:8M4(2)φ: C3:S3/C32C2 ⊆ Aut C2xC12726(C2xC12).20(C3:S3)432,185
(C2xC12).21(C3:S3) = C62.30D6φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).21(C3:S3)432,188
(C2xC12).22(C3:S3) = C2xHe3:4Q8φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).22(C3:S3)432,384
(C2xC12).23(C3:S3) = C2xHe3:5D4φ: C3:S3/C32C2 ⊆ Aut C2xC1272(C2xC12).23(C3:S3)432,386
(C2xC12).24(C3:S3) = C62.47D6φ: C3:S3/C32C2 ⊆ Aut C2xC12726(C2xC12).24(C3:S3)432,387
(C2xC12).25(C3:S3) = C3xC12.58D6φ: C3:S3/C32C2 ⊆ Aut C2xC1272(C2xC12).25(C3:S3)432,486
(C2xC12).26(C3:S3) = C3xC12:Dic3φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).26(C3:S3)432,489
(C2xC12).27(C3:S3) = C6xC32:4Q8φ: C3:S3/C32C2 ⊆ Aut C2xC12144(C2xC12).27(C3:S3)432,710
(C2xC12).28(C3:S3) = C2xHe3:4C8central extension (φ=1)144(C2xC12).28(C3:S3)432,184
(C2xC12).29(C3:S3) = C4xHe3:3C4central extension (φ=1)144(C2xC12).29(C3:S3)432,186
(C2xC12).30(C3:S3) = C2xC4xHe3:C2central extension (φ=1)72(C2xC12).30(C3:S3)432,385
(C2xC12).31(C3:S3) = C6xC32:4C8central extension (φ=1)144(C2xC12).31(C3:S3)432,485
(C2xC12).32(C3:S3) = C12xC3:Dic3central extension (φ=1)144(C2xC12).32(C3:S3)432,487

׿
x
:
Z
F
o
wr
Q
<