extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC12).1(C3:S3) = C6.Dic18 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).1(C3:S3) | 432,181 |
(C2xC12).2(C3:S3) = C6.11D36 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).2(C3:S3) | 432,183 |
(C2xC12).3(C3:S3) = C62.29D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).3(C3:S3) | 432,187 |
(C2xC12).4(C3:S3) = C62.31D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).4(C3:S3) | 432,189 |
(C2xC12).5(C3:S3) = C3xC6.Dic6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).5(C3:S3) | 432,488 |
(C2xC12).6(C3:S3) = C62.146D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).6(C3:S3) | 432,504 |
(C2xC12).7(C3:S3) = C36:Dic3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).7(C3:S3) | 432,182 |
(C2xC12).8(C3:S3) = C2xC12.D9 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).8(C3:S3) | 432,380 |
(C2xC12).9(C3:S3) = C2xC36:S3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).9(C3:S3) | 432,382 |
(C2xC12).10(C3:S3) = C62.147D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).10(C3:S3) | 432,505 |
(C2xC12).11(C3:S3) = C2xC33:8Q8 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).11(C3:S3) | 432,720 |
(C2xC12).12(C3:S3) = C36.69D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).12(C3:S3) | 432,179 |
(C2xC12).13(C3:S3) = C36.70D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).13(C3:S3) | 432,383 |
(C2xC12).14(C3:S3) = C33:18M4(2) | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).14(C3:S3) | 432,502 |
(C2xC12).15(C3:S3) = C2xC36.S3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).15(C3:S3) | 432,178 |
(C2xC12).16(C3:S3) = C4xC9:Dic3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).16(C3:S3) | 432,180 |
(C2xC12).17(C3:S3) = C2xC4xC9:S3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).17(C3:S3) | 432,381 |
(C2xC12).18(C3:S3) = C2xC33:7C8 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).18(C3:S3) | 432,501 |
(C2xC12).19(C3:S3) = C4xC33:5C4 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).19(C3:S3) | 432,503 |
(C2xC12).20(C3:S3) = He3:8M4(2) | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).20(C3:S3) | 432,185 |
(C2xC12).21(C3:S3) = C62.30D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).21(C3:S3) | 432,188 |
(C2xC12).22(C3:S3) = C2xHe3:4Q8 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).22(C3:S3) | 432,384 |
(C2xC12).23(C3:S3) = C2xHe3:5D4 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).23(C3:S3) | 432,386 |
(C2xC12).24(C3:S3) = C62.47D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).24(C3:S3) | 432,387 |
(C2xC12).25(C3:S3) = C3xC12.58D6 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).25(C3:S3) | 432,486 |
(C2xC12).26(C3:S3) = C3xC12:Dic3 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).26(C3:S3) | 432,489 |
(C2xC12).27(C3:S3) = C6xC32:4Q8 | φ: C3:S3/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).27(C3:S3) | 432,710 |
(C2xC12).28(C3:S3) = C2xHe3:4C8 | central extension (φ=1) | 144 | | (C2xC12).28(C3:S3) | 432,184 |
(C2xC12).29(C3:S3) = C4xHe3:3C4 | central extension (φ=1) | 144 | | (C2xC12).29(C3:S3) | 432,186 |
(C2xC12).30(C3:S3) = C2xC4xHe3:C2 | central extension (φ=1) | 72 | | (C2xC12).30(C3:S3) | 432,385 |
(C2xC12).31(C3:S3) = C6xC32:4C8 | central extension (φ=1) | 144 | | (C2xC12).31(C3:S3) | 432,485 |
(C2xC12).32(C3:S3) = C12xC3:Dic3 | central extension (φ=1) | 144 | | (C2xC12).32(C3:S3) | 432,487 |