Extensions 1→N→G→Q→1 with N=A4xC18 and Q=C2

Direct product G=NxQ with N=A4xC18 and Q=C2
dρLabelID
A4xC2xC18108A4xC2xC18432,546

Semidirect products G=N:Q with N=A4xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xC18):1C2 = C18xS4φ: C2/C1C2 ⊆ Out A4xC18543(A4xC18):1C2432,532
(A4xC18):2C2 = C2xC9:S4φ: C2/C1C2 ⊆ Out A4xC18546+(A4xC18):2C2432,536
(A4xC18):3C2 = C2xA4xD9φ: C2/C1C2 ⊆ Out A4xC18546+(A4xC18):3C2432,540

Non-split extensions G=N.Q with N=A4xC18 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xC18).1C2 = C9xA4:C4φ: C2/C1C2 ⊆ Out A4xC181083(A4xC18).1C2432,242
(A4xC18).2C2 = A4:Dic9φ: C2/C1C2 ⊆ Out A4xC181086-(A4xC18).2C2432,254
(A4xC18).3C2 = A4xDic9φ: C2/C1C2 ⊆ Out A4xC181086-(A4xC18).3C2432,266
(A4xC18).4C2 = A4xC36φ: trivial image1083(A4xC18).4C2432,325

׿
x
:
Z
F
o
wr
Q
<