Extensions 1→N→G→Q→1 with N=C3:C8 and Q=C3xS3

Direct product G=NxQ with N=C3:C8 and Q=C3xS3
dρLabelID
C3xS3xC3:C8484C3xS3xC3:C8432,414

Semidirect products G=N:Q with N=C3:C8 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
C3:C8:1(C3xS3) = C3xC3:D24φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8:1(C3xS3)432,419
C3:C8:2(C3xS3) = C3xD12.S3φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8:2(C3xS3)432,421
C3:C8:3(C3xS3) = C3xC32:5SD16φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8:3(C3xS3)432,422
C3:C8:4(C3xS3) = C3xD6.Dic3φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8:4(C3xS3)432,416
C3:C8:5(C3xS3) = C3xC12.31D6φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8:5(C3xS3)432,417
C3:C8:6(C3xS3) = C3xC12.29D6φ: trivial image484C3:C8:6(C3xS3)432,415

Non-split extensions G=N.Q with N=C3:C8 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
C3:C8.(C3xS3) = C3xC32:3Q16φ: C3xS3/C32C2 ⊆ Out C3:C8484C3:C8.(C3xS3)432,424

׿
x
:
Z
F
o
wr
Q
<