Extensions 1→N→G→Q→1 with N=C3 and Q=D4xD9

Direct product G=NxQ with N=C3 and Q=D4xD9
dρLabelID
C3xD4xD9724C3xD4xD9432,356

Semidirect products G=N:Q with N=C3 and Q=D4xD9
extensionφ:Q→Aut NdρLabelID
C3:1(D4xD9) = D9xD12φ: D4xD9/C4xD9C2 ⊆ Aut C3724+C3:1(D4xD9)432,292
C3:2(D4xD9) = C36:D6φ: D4xD9/D36C2 ⊆ Aut C3724C3:2(D4xD9)432,293
C3:3(D4xD9) = D18:D6φ: D4xD9/C9:D4C2 ⊆ Aut C3364+C3:3(D4xD9)432,315
C3:4(D4xD9) = D4xC9:S3φ: D4xD9/D4xC9C2 ⊆ Aut C3108C3:4(D4xD9)432,388
C3:5(D4xD9) = D9xC3:D4φ: D4xD9/C22xD9C2 ⊆ Aut C3724C3:5(D4xD9)432,314

Non-split extensions G=N.Q with N=C3 and Q=D4xD9
extensionφ:Q→Aut NdρLabelID
C3.(D4xD9) = D4xD27φ: D4xD9/D4xC9C2 ⊆ Aut C31084+C3.(D4xD9)432,47

׿
x
:
Z
F
o
wr
Q
<