Extensions 1→N→G→Q→1 with N=C3 and Q=D6.6D6

Direct product G=NxQ with N=C3 and Q=D6.6D6
dρLabelID
C3xD6.6D6484C3xD6.6D6432,647

Semidirect products G=N:Q with N=C3 and Q=D6.6D6
extensionφ:Q→Aut NdρLabelID
C3:1(D6.6D6) = Dic3.S32φ: D6.6D6/C6.D6C2 ⊆ Aut C3248+C3:1(D6.6D6)432,612
C3:2(D6.6D6) = D6.3S32φ: D6.6D6/C3:D12C2 ⊆ Aut C3248+C3:2(D6.6D6)432,609
C3:3(D6.6D6) = C12.40S32φ: D6.6D6/C3xDic6C2 ⊆ Aut C372C3:3(D6.6D6)432,665
C3:4(D6.6D6) = C12.58S32φ: D6.6D6/S3xC12C2 ⊆ Aut C372C3:4(D6.6D6)432,669
C3:5(D6.6D6) = C12:S3:12S3φ: D6.6D6/C12:S3C2 ⊆ Aut C3484C3:5(D6.6D6)432,688

Non-split extensions G=N.Q with N=C3 and Q=D6.6D6
extensionφ:Q→Aut NdρLabelID
C3.1(D6.6D6) = Dic6:5D9φ: D6.6D6/C3xDic6C2 ⊆ Aut C3724+C3.1(D6.6D6)432,282
C3.2(D6.6D6) = Dic9.D6φ: D6.6D6/S3xC12C2 ⊆ Aut C3724+C3.2(D6.6D6)432,289
C3.3(D6.6D6) = C12.S32φ: D6.6D6/C12:S3C2 ⊆ Aut C37212-C3.3(D6.6D6)432,299

׿
x
:
Z
F
o
wr
Q
<