Extensions 1→N→G→Q→1 with N=C3 and Q=C2xC3:D12

Direct product G=NxQ with N=C3 and Q=C2xC3:D12
dρLabelID
C6xC3:D1248C6xC3:D12432,656

Semidirect products G=N:Q with N=C3 and Q=C2xC3:D12
extensionφ:Q→Aut NdρLabelID
C3:1(C2xC3:D12) = S3xC3:D12φ: C2xC3:D12/C3:D12C2 ⊆ Aut C3248+C3:1(C2xC3:D12)432,598
C3:2(C2xC3:D12) = C2xC33:8D4φ: C2xC3:D12/C6xDic3C2 ⊆ Aut C372C3:2(C2xC3:D12)432,682
C3:3(C2xC3:D12) = C2xC33:7D4φ: C2xC3:D12/S3xC2xC6C2 ⊆ Aut C372C3:3(C2xC3:D12)432,681
C3:4(C2xC3:D12) = C2xC33:9D4φ: C2xC3:D12/C22xC3:S3C2 ⊆ Aut C348C3:4(C2xC3:D12)432,694

Non-split extensions G=N.Q with N=C3 and Q=C2xC3:D12
extensionφ:Q→Aut NdρLabelID
C3.1(C2xC3:D12) = C2xC3:D36φ: C2xC3:D12/C6xDic3C2 ⊆ Aut C372C3.1(C2xC3:D12)432,307
C3.2(C2xC3:D12) = C2xC9:D12φ: C2xC3:D12/S3xC2xC6C2 ⊆ Aut C372C3.2(C2xC3:D12)432,312
C3.3(C2xC3:D12) = C2xHe3:3D4φ: C2xC3:D12/C22xC3:S3C2 ⊆ Aut C372C3.3(C2xC3:D12)432,322

׿
x
:
Z
F
o
wr
Q
<