Extensions 1→N→G→Q→1 with N=C4xD9 and Q=S3

Direct product G=NxQ with N=C4xD9 and Q=S3
dρLabelID
C4xS3xD9724C4xS3xD9432,290

Semidirect products G=N:Q with N=C4xD9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xD9):1S3 = Dic6:5D9φ: S3/C3C2 ⊆ Out C4xD9724+(C4xD9):1S3432,282
(C4xD9):2S3 = D12:5D9φ: S3/C3C2 ⊆ Out C4xD91444-(C4xD9):2S3432,285
(C4xD9):3S3 = D9xD12φ: S3/C3C2 ⊆ Out C4xD9724+(C4xD9):3S3432,292
(C4xD9):4S3 = D6.D18φ: S3/C3C2 ⊆ Out C4xD9724(C4xD9):4S3432,287

Non-split extensions G=N.Q with N=C4xD9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xD9).1S3 = D9xDic6φ: S3/C3C2 ⊆ Out C4xD91444-(C4xD9).1S3432,280
(C4xD9).2S3 = C36.39D6φ: S3/C3C2 ⊆ Out C4xD91444(C4xD9).2S3432,60
(C4xD9).3S3 = D9xC3:C8φ: trivial image1444(C4xD9).3S3432,58

׿
x
:
Z
F
o
wr
Q
<