Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC2xC12

Direct product G=NxQ with N=C3 and Q=S3xC2xC12
dρLabelID
S3xC6xC12144S3xC6xC12432,701

Semidirect products G=N:Q with N=C3 and Q=S3xC2xC12
extensionφ:Q→Aut NdρLabelID
C3:1(S3xC2xC12) = S32xC12φ: S3xC2xC12/S3xC12C2 ⊆ Aut C3484C3:1(S3xC2xC12)432,648
C3:2(S3xC2xC12) = C6xC6.D6φ: S3xC2xC12/C6xDic3C2 ⊆ Aut C348C3:2(S3xC2xC12)432,654
C3:3(S3xC2xC12) = C3:S3xC2xC12φ: S3xC2xC12/C6xC12C2 ⊆ Aut C3144C3:3(S3xC2xC12)432,711
C3:4(S3xC2xC12) = S3xC6xDic3φ: S3xC2xC12/S3xC2xC6C2 ⊆ Aut C348C3:4(S3xC2xC12)432,651

Non-split extensions G=N.Q with N=C3 and Q=S3xC2xC12
extensionφ:Q→Aut NdρLabelID
C3.1(S3xC2xC12) = D9xC2xC12φ: S3xC2xC12/C6xC12C2 ⊆ Aut C3144C3.1(S3xC2xC12)432,342
C3.2(S3xC2xC12) = C2xC4xC32:C6φ: S3xC2xC12/C6xC12C2 ⊆ Aut C372C3.2(S3xC2xC12)432,349
C3.3(S3xC2xC12) = C2xC4xC9:C6φ: S3xC2xC12/C6xC12C2 ⊆ Aut C372C3.3(S3xC2xC12)432,353
C3.4(S3xC2xC12) = S3xC2xC36central extension (φ=1)144C3.4(S3xC2xC12)432,345

׿
x
:
Z
F
o
wr
Q
<