Extensions 1→N→G→Q→1 with N=C6 and Q=C4xD9

Direct product G=NxQ with N=C6 and Q=C4xD9
dρLabelID
D9xC2xC12144D9xC2xC12432,342

Semidirect products G=N:Q with N=C6 and Q=C4xD9
extensionφ:Q→Aut NdρLabelID
C6:1(C4xD9) = C2xC18.D6φ: C4xD9/Dic9C2 ⊆ Aut C672C6:1(C4xD9)432,306
C6:2(C4xD9) = C2xC4xC9:S3φ: C4xD9/C36C2 ⊆ Aut C6216C6:2(C4xD9)432,381
C6:3(C4xD9) = C2xDic3xD9φ: C4xD9/D18C2 ⊆ Aut C6144C6:3(C4xD9)432,304

Non-split extensions G=N.Q with N=C6 and Q=C4xD9
extensionφ:Q→Aut NdρLabelID
C6.1(C4xD9) = C36.38D6φ: C4xD9/Dic9C2 ⊆ Aut C6724C6.1(C4xD9)432,59
C6.2(C4xD9) = C36.40D6φ: C4xD9/Dic9C2 ⊆ Aut C6724C6.2(C4xD9)432,61
C6.3(C4xD9) = C18.Dic6φ: C4xD9/Dic9C2 ⊆ Aut C6144C6.3(C4xD9)432,89
C6.4(C4xD9) = C6.18D36φ: C4xD9/Dic9C2 ⊆ Aut C672C6.4(C4xD9)432,92
C6.5(C4xD9) = C8xD27φ: C4xD9/C36C2 ⊆ Aut C62162C6.5(C4xD9)432,5
C6.6(C4xD9) = C8:D27φ: C4xD9/C36C2 ⊆ Aut C62162C6.6(C4xD9)432,6
C6.7(C4xD9) = C4xDic27φ: C4xD9/C36C2 ⊆ Aut C6432C6.7(C4xD9)432,11
C6.8(C4xD9) = Dic27:C4φ: C4xD9/C36C2 ⊆ Aut C6432C6.8(C4xD9)432,12
C6.9(C4xD9) = D54:C4φ: C4xD9/C36C2 ⊆ Aut C6216C6.9(C4xD9)432,14
C6.10(C4xD9) = C2xC4xD27φ: C4xD9/C36C2 ⊆ Aut C6216C6.10(C4xD9)432,44
C6.11(C4xD9) = C8xC9:S3φ: C4xD9/C36C2 ⊆ Aut C6216C6.11(C4xD9)432,169
C6.12(C4xD9) = C72:S3φ: C4xD9/C36C2 ⊆ Aut C6216C6.12(C4xD9)432,170
C6.13(C4xD9) = C4xC9:Dic3φ: C4xD9/C36C2 ⊆ Aut C6432C6.13(C4xD9)432,180
C6.14(C4xD9) = C6.Dic18φ: C4xD9/C36C2 ⊆ Aut C6432C6.14(C4xD9)432,181
C6.15(C4xD9) = C6.11D36φ: C4xD9/C36C2 ⊆ Aut C6216C6.15(C4xD9)432,183
C6.16(C4xD9) = D9xC3:C8φ: C4xD9/D18C2 ⊆ Aut C61444C6.16(C4xD9)432,58
C6.17(C4xD9) = C36.39D6φ: C4xD9/D18C2 ⊆ Aut C61444C6.17(C4xD9)432,60
C6.18(C4xD9) = Dic3xDic9φ: C4xD9/D18C2 ⊆ Aut C6144C6.18(C4xD9)432,87
C6.19(C4xD9) = Dic9:Dic3φ: C4xD9/D18C2 ⊆ Aut C6144C6.19(C4xD9)432,88
C6.20(C4xD9) = D18:Dic3φ: C4xD9/D18C2 ⊆ Aut C6144C6.20(C4xD9)432,91
C6.21(C4xD9) = D9xC24central extension (φ=1)1442C6.21(C4xD9)432,105
C6.22(C4xD9) = C3xC8:D9central extension (φ=1)1442C6.22(C4xD9)432,106
C6.23(C4xD9) = C12xDic9central extension (φ=1)144C6.23(C4xD9)432,128
C6.24(C4xD9) = C3xDic9:C4central extension (φ=1)144C6.24(C4xD9)432,129
C6.25(C4xD9) = C3xD18:C4central extension (φ=1)144C6.25(C4xD9)432,134

׿
x
:
Z
F
o
wr
Q
<