Extensions 1→N→G→Q→1 with N=C2xS3xC3:S3 and Q=C2

Direct product G=NxQ with N=C2xS3xC3:S3 and Q=C2
dρLabelID
C22xS3xC3:S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C2xS3xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xC3:S3):1C2 = S3xC3:D12φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3):1C2432,598
(C2xS3xC3:S3):2C2 = D6:4S32φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3):2C2432,599
(C2xS3xC3:S3):3C2 = (S3xC6):D6φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3):3C2432,601
(C2xS3xC3:S3):4C2 = C3:S3:4D12φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3):4C2432,602
(C2xS3xC3:S3):5C2 = S3xC12:S3φ: C2/C1C2 ⊆ Out C2xS3xC3:S372(C2xS3xC3:S3):5C2432,671
(C2xS3xC3:S3):6C2 = C3:S3xD12φ: C2/C1C2 ⊆ Out C2xS3xC3:S372(C2xS3xC3:S3):6C2432,672
(C2xS3xC3:S3):7C2 = C12:S32φ: C2/C1C2 ⊆ Out C2xS3xC3:S372(C2xS3xC3:S3):7C2432,673
(C2xS3xC3:S3):8C2 = S3xC32:7D4φ: C2/C1C2 ⊆ Out C2xS3xC3:S372(C2xS3xC3:S3):8C2432,684
(C2xS3xC3:S3):9C2 = C3:S3xC3:D4φ: C2/C1C2 ⊆ Out C2xS3xC3:S372(C2xS3xC3:S3):9C2432,685
(C2xS3xC3:S3):10C2 = C62:23D6φ: C2/C1C2 ⊆ Out C2xS3xC3:S336(C2xS3xC3:S3):10C2432,686
(C2xS3xC3:S3):11C2 = C2xS33φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3):11C2432,759

Non-split extensions G=N.Q with N=C2xS3xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xC3:S3).1C2 = D6:(C32:C4)φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3).1C2432,568
(C2xS3xC3:S3).2C2 = S3xC6.D6φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3).2C2432,595
(C2xS3xC3:S3).3C2 = C2xS3xC32:C4φ: C2/C1C2 ⊆ Out C2xS3xC3:S3248+(C2xS3xC3:S3).3C2432,753
(C2xS3xC3:S3).4C2 = C4xS3xC3:S3φ: trivial image72(C2xS3xC3:S3).4C2432,670

׿
x
:
Z
F
o
wr
Q
<