Extensions 1→N→G→Q→1 with N=He3 and Q=C2xC8

Direct product G=NxQ with N=He3 and Q=C2xC8
dρLabelID
C2xC8xHe3144C2xC8xHe3432,210

Semidirect products G=N:Q with N=He3 and Q=C2xC8
extensionφ:Q→Out NdρLabelID
He3:(C2xC8) = C2xHe3:C8φ: C2xC8/C2C8 ⊆ Out He3546+He3:(C2xC8)432,529
He3:2(C2xC8) = He3:2(C2xC8)φ: C2xC8/C4C4 ⊆ Out He3723He3:2(C2xC8)432,273
He3:3(C2xC8) = C32:C6:C8φ: C2xC8/C4C22 ⊆ Out He3726He3:3(C2xC8)432,76
He3:4(C2xC8) = C12.89S32φ: C2xC8/C4C22 ⊆ Out He3726He3:4(C2xC8)432,81
He3:5(C2xC8) = C2xHe3:2C8φ: C2xC8/C22C4 ⊆ Out He3144He3:5(C2xC8)432,277
He3:6(C2xC8) = C8xC32:C6φ: C2xC8/C8C2 ⊆ Out He3726He3:6(C2xC8)432,115
He3:7(C2xC8) = C8xHe3:C2φ: C2xC8/C8C2 ⊆ Out He3723He3:7(C2xC8)432,173
He3:8(C2xC8) = C2xHe3:3C8φ: C2xC8/C2xC4C2 ⊆ Out He3144He3:8(C2xC8)432,136
He3:9(C2xC8) = C2xHe3:4C8φ: C2xC8/C2xC4C2 ⊆ Out He3144He3:9(C2xC8)432,184


׿
x
:
Z
F
o
wr
Q
<