Extensions 1→N→G→Q→1 with N=Q8xC3xC6 and Q=C3

Direct product G=NxQ with N=Q8xC3xC6 and Q=C3
dρLabelID
Q8xC32xC6432Q8xC3^2xC6432,732

Semidirect products G=N:Q with N=Q8xC3xC6 and Q=C3
extensionφ:Q→Out NdρLabelID
(Q8xC3xC6):1C3 = C2xQ8:He3φ: C3/C1C3 ⊆ Out Q8xC3xC6144(Q8xC3xC6):1C3432,336
(Q8xC3xC6):2C3 = C2xQ8xHe3φ: C3/C1C3 ⊆ Out Q8xC3xC6144(Q8xC3xC6):2C3432,407
(Q8xC3xC6):3C3 = C3xC6xSL2(F3)φ: C3/C1C3 ⊆ Out Q8xC3xC6144(Q8xC3xC6):3C3432,698

Non-split extensions G=N.Q with N=Q8xC3xC6 and Q=C3
extensionφ:Q→Out NdρLabelID
(Q8xC3xC6).1C3 = C6xQ8:C9φ: C3/C1C3 ⊆ Out Q8xC3xC6432(Q8xC3xC6).1C3432,334
(Q8xC3xC6).2C3 = C2xQ8:3- 1+2φ: C3/C1C3 ⊆ Out Q8xC3xC6144(Q8xC3xC6).2C3432,335
(Q8xC3xC6).3C3 = C2xQ8x3- 1+2φ: C3/C1C3 ⊆ Out Q8xC3xC6144(Q8xC3xC6).3C3432,408
(Q8xC3xC6).4C3 = Q8xC3xC18φ: trivial image432(Q8xC3xC6).4C3432,406

׿
x
:
Z
F
o
wr
Q
<