Extensions 1→N→G→Q→1 with N=Q8x3- 1+2 and Q=C2

Direct product G=NxQ with N=Q8x3- 1+2 and Q=C2
dρLabelID
C2xQ8x3- 1+2144C2xQ8xES-(3,1)432,408

Semidirect products G=N:Q with N=Q8x3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8x3- 1+2):1C2 = D36.C6φ: C2/C1C2 ⊆ Out Q8x3- 1+27212+(Q8xES-(3,1)):1C2432,163
(Q8x3- 1+2):2C2 = Q8xC9:C6φ: C2/C1C2 ⊆ Out Q8x3- 1+27212-(Q8xES-(3,1)):2C2432,370
(Q8x3- 1+2):3C2 = D36:3C6φ: C2/C1C2 ⊆ Out Q8x3- 1+27212+(Q8xES-(3,1)):3C2432,371
(Q8x3- 1+2):4C2 = SD16x3- 1+2φ: C2/C1C2 ⊆ Out Q8x3- 1+2726(Q8xES-(3,1)):4C2432,220
(Q8x3- 1+2):5C2 = C4oD4x3- 1+2φ: trivial image726(Q8xES-(3,1)):5C2432,411

Non-split extensions G=N.Q with N=Q8x3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8x3- 1+2).1C2 = Dic18.C6φ: C2/C1C2 ⊆ Out Q8x3- 1+214412-(Q8xES-(3,1)).1C2432,162
(Q8x3- 1+2).2C2 = Q16x3- 1+2φ: C2/C1C2 ⊆ Out Q8x3- 1+21446(Q8xES-(3,1)).2C2432,223

׿
x
:
Z
F
o
wr
Q
<