Extensions 1→N→G→Q→1 with N=D18 and Q=C2xC6

Direct product G=NxQ with N=D18 and Q=C2xC6
dρLabelID
D9xC22xC6144D9xC2^2xC6432,556

Semidirect products G=N:Q with N=D18 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
D18:1(C2xC6) = C2xD36:C3φ: C2xC6/C2C6 ⊆ Out D1872D18:1(C2xC6)432,354
D18:2(C2xC6) = D4xC9:C6φ: C2xC6/C2C6 ⊆ Out D183612+D18:2(C2xC6)432,362
D18:3(C2xC6) = C2xDic9:C6φ: C2xC6/C2C6 ⊆ Out D1872D18:3(C2xC6)432,379
D18:4(C2xC6) = C23xC9:C6φ: C2xC6/C22C3 ⊆ Out D1872D18:4(C2xC6)432,559
D18:5(C2xC6) = C6xD36φ: C2xC6/C6C2 ⊆ Out D18144D18:5(C2xC6)432,343
D18:6(C2xC6) = C3xD4xD9φ: C2xC6/C6C2 ⊆ Out D18724D18:6(C2xC6)432,356
D18:7(C2xC6) = C6xC9:D4φ: C2xC6/C6C2 ⊆ Out D1872D18:7(C2xC6)432,374

Non-split extensions G=N.Q with N=D18 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
D18.1(C2xC6) = D36:6C6φ: C2xC6/C2C6 ⊆ Out D18726D18.1(C2xC6)432,355
D18.2(C2xC6) = Dic18:2C6φ: C2xC6/C2C6 ⊆ Out D187212-D18.2(C2xC6)432,363
D18.3(C2xC6) = D36:3C6φ: C2xC6/C2C6 ⊆ Out D187212+D18.3(C2xC6)432,371
D18.4(C2xC6) = C2xC4xC9:C6φ: C2xC6/C22C3 ⊆ Out D1872D18.4(C2xC6)432,353
D18.5(C2xC6) = Q8xC9:C6φ: C2xC6/C22C3 ⊆ Out D187212-D18.5(C2xC6)432,370
D18.6(C2xC6) = C3xD36:5C2φ: C2xC6/C6C2 ⊆ Out D18722D18.6(C2xC6)432,344
D18.7(C2xC6) = C3xD4:2D9φ: C2xC6/C6C2 ⊆ Out D18724D18.7(C2xC6)432,357
D18.8(C2xC6) = C3xQ8:3D9φ: C2xC6/C6C2 ⊆ Out D181444D18.8(C2xC6)432,365
D18.9(C2xC6) = D9xC2xC12φ: trivial image144D18.9(C2xC6)432,342
D18.10(C2xC6) = C3xQ8xD9φ: trivial image1444D18.10(C2xC6)432,364

׿
x
:
Z
F
o
wr
Q
<