Extensions 1→N→G→Q→1 with N=C2xDic28 and Q=C2

Direct product G=NxQ with N=C2xDic28 and Q=C2
dρLabelID
C22xDic28448C2^2xDic28448,1195

Semidirect products G=N:Q with N=C2xDic28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic28):1C2 = C8.8D28φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):1C2448,230
(C2xDic28):2C2 = D28.32D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):2C2448,267
(C2xDic28):3C2 = C22:Dic28φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):3C2448,273
(C2xDic28):4C2 = Dic14.D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):4C2448,301
(C2xDic28):5C2 = D4.D28φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):5C2448,317
(C2xDic28):6C2 = D14:4Q16φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):6C2448,342
(C2xDic28):7C2 = C42.36D14φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):7C2448,379
(C2xDic28):8C2 = C2xC112:C2φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):8C2448,437
(C2xDic28):9C2 = C56.82D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):9C2448,650
(C2xDic28):10C2 = C8.D28φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):10C2448,249
(C2xDic28):11C2 = C16.D14φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):11C2448,443
(C2xDic28):12C2 = C56.4D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):12C2448,671
(C2xDic28):13C2 = D4.5D28φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):13C2448,677
(C2xDic28):14C2 = C2xC8.D14φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):14C2448,1200
(C2xDic28):15C2 = D4.13D28φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):15C2448,1206
(C2xDic28):16C2 = D14:2Q16φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):16C2448,421
(C2xDic28):17C2 = C2xD8.D7φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):17C2448,682
(C2xDic28):18C2 = C56.22D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):18C2448,689
(C2xDic28):19C2 = C2xD8:3D7φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):19C2448,1209
(C2xDic28):20C2 = C2xD7xQ16φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):20C2448,1216
(C2xDic28):21C2 = C8.20D28φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):21C2448,430
(C2xDic28):22C2 = C56.31C23φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):22C2448,729
(C2xDic28):23C2 = D8.10D14φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28):23C2448,1224
(C2xDic28):24C2 = C8.2D28φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):24C2448,402
(C2xDic28):25C2 = C56.31D4φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):25C2448,701
(C2xDic28):26C2 = C2xSD16:D7φ: C2/C1C2 ⊆ Out C2xDic28224(C2xDic28):26C2448,1213
(C2xDic28):27C2 = C2xD56:7C2φ: trivial image224(C2xDic28):27C2448,1194

Non-split extensions G=N.Q with N=C2xDic28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic28).1C2 = C56.78D4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).1C2448,60
(C2xDic28).2C2 = C28:4Q16φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).2C2448,233
(C2xDic28).3C2 = Dic7:Q16φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).3C2448,327
(C2xDic28).4C2 = C4:Dic28φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).4C2448,383
(C2xDic28).5C2 = C2xDic56φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).5C2448,439
(C2xDic28).6C2 = C28.4D8φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28).6C2448,74
(C2xDic28).7C2 = Dic28:C4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).7C2448,250
(C2xDic28).8C2 = C56.6D4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).8C2448,49
(C2xDic28).9C2 = Dic28:6C4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).9C2448,407
(C2xDic28).10C2 = C2xC7:Q32φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).10C2448,714
(C2xDic28).11C2 = C56.26D4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).11C2448,715
(C2xDic28).12C2 = C56.8D4φ: C2/C1C2 ⊆ Out C2xDic282244-(C2xDic28).12C2448,53
(C2xDic28).13C2 = Dic28:9C4φ: C2/C1C2 ⊆ Out C2xDic28448(C2xDic28).13C2448,387
(C2xDic28).14C2 = C4xDic28φ: trivial image448(C2xDic28).14C2448,232

׿
x
:
Z
F
o
wr
Q
<