Extensions 1→N→G→Q→1 with N=SD16 and Q=D14

Direct product G=NxQ with N=SD16 and Q=D14
dρLabelID
C2xD7xSD16112C2xD7xSD16448,1211

Semidirect products G=N:Q with N=SD16 and Q=D14
extensionφ:Q→Out NdρLabelID
SD16:1D14 = D7xC8:C22φ: D14/D7C2 ⊆ Out SD16568+SD16:1D14448,1225
SD16:2D14 = SD16:D14φ: D14/D7C2 ⊆ Out SD161128-SD16:2D14448,1226
SD16:3D14 = D8:5D14φ: D14/D7C2 ⊆ Out SD161128+SD16:3D14448,1227
SD16:4D14 = D8:6D14φ: D14/D7C2 ⊆ Out SD161128-SD16:4D14448,1228
SD16:5D14 = D7xC8.C22φ: D14/D7C2 ⊆ Out SD161128-SD16:5D14448,1229
SD16:6D14 = D56:C22φ: D14/D7C2 ⊆ Out SD161128+SD16:6D14448,1230
SD16:7D14 = C56.C23φ: D14/D7C2 ⊆ Out SD161128+SD16:7D14448,1231
SD16:8D14 = C2xD56:C2φ: D14/C14C2 ⊆ Out SD16112SD16:8D14448,1212
SD16:9D14 = C2xSD16:D7φ: D14/C14C2 ⊆ Out SD16224SD16:9D14448,1213
SD16:10D14 = D8:10D14φ: D14/C14C2 ⊆ Out SD161124SD16:10D14448,1221
SD16:11D14 = D8:15D14φ: D14/C14C2 ⊆ Out SD161124+SD16:11D14448,1222
SD16:12D14 = C2xSD16:3D7φ: trivial image224SD16:12D14448,1214
SD16:13D14 = D28.29D4φ: trivial image1124SD16:13D14448,1215
SD16:14D14 = D7xC4oD8φ: trivial image1124SD16:14D14448,1220
SD16:15D14 = D8:11D14φ: trivial image1124SD16:15D14448,1223

Non-split extensions G=N.Q with N=SD16 and Q=D14
extensionφ:Q→Out NdρLabelID
SD16.1D14 = D28.44D4φ: D14/D7C2 ⊆ Out SD162248-SD16.1D14448,1232
SD16.2D14 = D8.10D14φ: D14/C14C2 ⊆ Out SD162244-SD16.2D14448,1224

׿
x
:
Z
F
o
wr
Q
<