Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C7xQ8

Direct product G=NxQ with N=C2xC4 and Q=C7xQ8
dρLabelID
Q8xC2xC28448Q8xC2xC28448,1299

Semidirect products G=N:Q with N=C2xC4 and Q=C7xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C7xQ8) = C7xC23.78C23φ: C7xQ8/C14C22 ⊆ Aut C2xC4448(C2xC4):1(C7xQ8)448,803
(C2xC4):2(C7xQ8) = C7xC23.41C23φ: C7xQ8/C14C22 ⊆ Aut C2xC4224(C2xC4):2(C7xQ8)448,1327
(C2xC4):3(C7xQ8) = C7xC23.67C23φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4):3(C7xQ8)448,799
(C2xC4):4(C7xQ8) = C14xC4:Q8φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4):4(C7xQ8)448,1314
(C2xC4):5(C7xQ8) = C7xC23.37C23φ: C7xQ8/C28C2 ⊆ Aut C2xC4224(C2xC4):5(C7xQ8)448,1316

Non-split extensions G=N.Q with N=C2xC4 and Q=C7xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C7xQ8) = C7xC4.9C42φ: C7xQ8/C14C22 ⊆ Aut C2xC41124(C2xC4).1(C7xQ8)448,141
(C2xC4).2(C7xQ8) = C7xC22.C42φ: C7xQ8/C14C22 ⊆ Aut C2xC4224(C2xC4).2(C7xQ8)448,147
(C2xC4).3(C7xQ8) = C7xM4(2):4C4φ: C7xQ8/C14C22 ⊆ Aut C2xC41124(C2xC4).3(C7xQ8)448,148
(C2xC4).4(C7xQ8) = C7xC23.81C23φ: C7xQ8/C14C22 ⊆ Aut C2xC4448(C2xC4).4(C7xQ8)448,806
(C2xC4).5(C7xQ8) = C7xC23.83C23φ: C7xQ8/C14C22 ⊆ Aut C2xC4448(C2xC4).5(C7xQ8)448,808
(C2xC4).6(C7xQ8) = C7xM4(2):C4φ: C7xQ8/C14C22 ⊆ Aut C2xC4224(C2xC4).6(C7xQ8)448,836
(C2xC4).7(C7xQ8) = C7xM4(2).C4φ: C7xQ8/C14C22 ⊆ Aut C2xC41124(C2xC4).7(C7xQ8)448,838
(C2xC4).8(C7xQ8) = C7xC8:2C8φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).8(C7xQ8)448,138
(C2xC4).9(C7xQ8) = C7xC8:1C8φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).9(C7xQ8)448,139
(C2xC4).10(C7xQ8) = C7xC23.63C23φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).10(C7xQ8)448,795
(C2xC4).11(C7xQ8) = C7xC23.65C23φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).11(C7xQ8)448,797
(C2xC4).12(C7xQ8) = C7xC42:6C4φ: C7xQ8/C28C2 ⊆ Aut C2xC4112(C2xC4).12(C7xQ8)448,143
(C2xC4).13(C7xQ8) = C7xC22.4Q16φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).13(C7xQ8)448,144
(C2xC4).14(C7xQ8) = C7xC42:8C4φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).14(C7xQ8)448,790
(C2xC4).15(C7xQ8) = C7xC42:9C4φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).15(C7xQ8)448,792
(C2xC4).16(C7xQ8) = C7xC4:M4(2)φ: C7xQ8/C28C2 ⊆ Aut C2xC4224(C2xC4).16(C7xQ8)448,831
(C2xC4).17(C7xQ8) = C7xC42.6C22φ: C7xQ8/C28C2 ⊆ Aut C2xC4224(C2xC4).17(C7xQ8)448,832
(C2xC4).18(C7xQ8) = C14xC4.Q8φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).18(C7xQ8)448,833
(C2xC4).19(C7xQ8) = C14xC2.D8φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).19(C7xQ8)448,834
(C2xC4).20(C7xQ8) = C7xC23.25D4φ: C7xQ8/C28C2 ⊆ Aut C2xC4224(C2xC4).20(C7xQ8)448,835
(C2xC4).21(C7xQ8) = C14xC8.C4φ: C7xQ8/C28C2 ⊆ Aut C2xC4224(C2xC4).21(C7xQ8)448,837
(C2xC4).22(C7xQ8) = C14xC42.C2φ: C7xQ8/C28C2 ⊆ Aut C2xC4448(C2xC4).22(C7xQ8)448,1310
(C2xC4).23(C7xQ8) = C7xC22.7C42central extension (φ=1)448(C2xC4).23(C7xQ8)448,140
(C2xC4).24(C7xQ8) = C4:C4xC28central extension (φ=1)448(C2xC4).24(C7xQ8)448,786
(C2xC4).25(C7xQ8) = C14xC4:C8central extension (φ=1)448(C2xC4).25(C7xQ8)448,830

׿
x
:
Z
F
o
wr
Q
<