Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC56

Direct product G=NxQ with N=C4 and Q=C2xC56
dρLabelID
C2xC4xC56448C2xC4xC56448,810

Semidirect products G=N:Q with N=C4 and Q=C2xC56
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC56) = D4xC56φ: C2xC56/C56C2 ⊆ Aut C4224C4:1(C2xC56)448,842
C4:2(C2xC56) = C14xC4:C8φ: C2xC56/C2xC28C2 ⊆ Aut C4448C4:2(C2xC56)448,830

Non-split extensions G=N.Q with N=C4 and Q=C2xC56
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC56) = C7xD4:C8φ: C2xC56/C56C2 ⊆ Aut C4224C4.1(C2xC56)448,129
C4.2(C2xC56) = C7xQ8:C8φ: C2xC56/C56C2 ⊆ Aut C4448C4.2(C2xC56)448,130
C4.3(C2xC56) = C7xD4.C8φ: C2xC56/C56C2 ⊆ Aut C42242C4.3(C2xC56)448,154
C4.4(C2xC56) = Q8xC56φ: C2xC56/C56C2 ⊆ Aut C4448C4.4(C2xC56)448,853
C4.5(C2xC56) = C7xD4oC16φ: C2xC56/C56C2 ⊆ Aut C42242C4.5(C2xC56)448,912
C4.6(C2xC56) = C7xC8:2C8φ: C2xC56/C2xC28C2 ⊆ Aut C4448C4.6(C2xC56)448,138
C4.7(C2xC56) = C7xC8:1C8φ: C2xC56/C2xC28C2 ⊆ Aut C4448C4.7(C2xC56)448,139
C4.8(C2xC56) = C7xC8.C8φ: C2xC56/C2xC28C2 ⊆ Aut C41122C4.8(C2xC56)448,168
C4.9(C2xC56) = C7xC42.12C4φ: C2xC56/C2xC28C2 ⊆ Aut C4224C4.9(C2xC56)448,839
C4.10(C2xC56) = C14xM5(2)φ: C2xC56/C2xC28C2 ⊆ Aut C4224C4.10(C2xC56)448,911
C4.11(C2xC56) = C7xC8:C8central extension (φ=1)448C4.11(C2xC56)448,126
C4.12(C2xC56) = C7xC16:5C4central extension (φ=1)448C4.12(C2xC56)448,150
C4.13(C2xC56) = C7xM6(2)central extension (φ=1)2242C4.13(C2xC56)448,174

׿
x
:
Z
F
o
wr
Q
<