Extensions 1→N→G→Q→1 with N=C16 and Q=C2xC14

Direct product G=NxQ with N=C16 and Q=C2xC14
dρLabelID
C22xC112448C2^2xC112448,910

Semidirect products G=N:Q with N=C16 and Q=C2xC14
extensionφ:Q→Aut NdρLabelID
C16:(C2xC14) = C7xC16:C22φ: C2xC14/C7C22 ⊆ Aut C161124C16:(C2xC14)448,917
C16:2(C2xC14) = C14xD16φ: C2xC14/C14C2 ⊆ Aut C16224C16:2(C2xC14)448,913
C16:3(C2xC14) = C14xSD32φ: C2xC14/C14C2 ⊆ Aut C16224C16:3(C2xC14)448,914
C16:4(C2xC14) = C14xM5(2)φ: C2xC14/C14C2 ⊆ Aut C16224C16:4(C2xC14)448,911

Non-split extensions G=N.Q with N=C16 and Q=C2xC14
extensionφ:Q→Aut NdρLabelID
C16.(C2xC14) = C7xQ32:C2φ: C2xC14/C7C22 ⊆ Aut C162244C16.(C2xC14)448,918
C16.2(C2xC14) = C7xD32φ: C2xC14/C14C2 ⊆ Aut C162242C16.2(C2xC14)448,175
C16.3(C2xC14) = C7xSD64φ: C2xC14/C14C2 ⊆ Aut C162242C16.3(C2xC14)448,176
C16.4(C2xC14) = C7xQ64φ: C2xC14/C14C2 ⊆ Aut C164482C16.4(C2xC14)448,177
C16.5(C2xC14) = C14xQ32φ: C2xC14/C14C2 ⊆ Aut C16448C16.5(C2xC14)448,915
C16.6(C2xC14) = C7xC4oD16φ: C2xC14/C14C2 ⊆ Aut C162242C16.6(C2xC14)448,916
C16.7(C2xC14) = C7xM6(2)central extension (φ=1)2242C16.7(C2xC14)448,174
C16.8(C2xC14) = C7xD4oC16central extension (φ=1)2242C16.8(C2xC14)448,912

׿
x
:
Z
F
o
wr
Q
<