Extensions 1→N→G→Q→1 with N=C2xD4xD7 and Q=C2

Direct product G=NxQ with N=C2xD4xD7 and Q=C2
dρLabelID
C22xD4xD7112C2^2xD4xD7448,1369

Semidirect products G=N:Q with N=C2xD4xD7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4xD7):1C2 = D4:D28φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):1C2448,307
(C2xD4xD7):2C2 = D28:D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):2C2448,690
(C2xD4xD7):3C2 = D4xD28φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):3C2448,1002
(C2xD4xD7):4C2 = D4:5D28φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):4C2448,1007
(C2xD4xD7):5C2 = D7xC22wrC2φ: C2/C1C2 ⊆ Out C2xD4xD756(C2xD4xD7):5C2448,1041
(C2xD4xD7):6C2 = C24:2D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):6C2448,1042
(C2xD4xD7):7C2 = C24:3D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):7C2448,1043
(C2xD4xD7):8C2 = D7xC4:D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):8C2448,1057
(C2xD4xD7):9C2 = C14.372+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):9C2448,1058
(C2xD4xD7):10C2 = C14.382+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):10C2448,1060
(C2xD4xD7):11C2 = D28:19D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):11C2448,1062
(C2xD4xD7):12C2 = C14.402+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):12C2448,1063
(C2xD4xD7):13C2 = D28:20D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):13C2448,1065
(C2xD4xD7):14C2 = C14.1202+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):14C2448,1106
(C2xD4xD7):15C2 = C14.1212+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):15C2448,1107
(C2xD4xD7):16C2 = C42:18D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):16C2448,1127
(C2xD4xD7):17C2 = D28:10D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):17C2448,1129
(C2xD4xD7):18C2 = D7xC4:1D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):18C2448,1167
(C2xD4xD7):19C2 = C42:26D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):19C2448,1168
(C2xD4xD7):20C2 = D28:11D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):20C2448,1170
(C2xD4xD7):21C2 = C2xD7xD8φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):21C2448,1207
(C2xD4xD7):22C2 = C2xD8:D7φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):22C2448,1208
(C2xD4xD7):23C2 = C2xD56:C2φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):23C2448,1212
(C2xD4xD7):24C2 = D7xC8:C22φ: C2/C1C2 ⊆ Out C2xD4xD7568+(C2xD4xD7):24C2448,1225
(C2xD4xD7):25C2 = D4xC7:D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):25C2448,1254
(C2xD4xD7):26C2 = C14.1452+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):26C2448,1282
(C2xD4xD7):27C2 = C2xD4:6D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):27C2448,1371
(C2xD4xD7):28C2 = C2xD4:8D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7):28C2448,1376
(C2xD4xD7):29C2 = D7x2+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD7568+(C2xD4xD7):29C2448,1379
(C2xD4xD7):30C2 = C2xD7xC4oD4φ: trivial image112(C2xD4xD7):30C2448,1375

Non-split extensions G=N.Q with N=C2xD4xD7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4xD7).1C2 = D7xC23:C4φ: C2/C1C2 ⊆ Out C2xD4xD7568+(C2xD4xD7).1C2448,277
(C2xD4xD7).2C2 = D7xC4.D4φ: C2/C1C2 ⊆ Out C2xD4xD7568+(C2xD4xD7).2C2448,278
(C2xD4xD7).3C2 = D7xD4:C4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).3C2448,303
(C2xD4xD7).4C2 = (D4xD7):C4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).4C2448,304
(C2xD4xD7).5C2 = D4.6D28φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).5C2448,310
(C2xD4xD7).6C2 = D14:6SD16φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).6C2448,703
(C2xD4xD7).7C2 = C42:11D14φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).7C2448,998
(C2xD4xD7).8C2 = D7xC22.D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).8C2448,1105
(C2xD4xD7).9C2 = D7xC4.4D4φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).9C2448,1126
(C2xD4xD7).10C2 = C2xD7xSD16φ: C2/C1C2 ⊆ Out C2xD4xD7112(C2xD4xD7).10C2448,1211
(C2xD4xD7).11C2 = C4xD4xD7φ: trivial image112(C2xD4xD7).11C2448,997

׿
x
:
Z
F
o
wr
Q
<