Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xDic7

Direct product G=NxQ with N=C2xC4 and Q=C2xDic7
dρLabelID
C22xC4xDic7448C2^2xC4xDic7448,1235

Semidirect products G=N:Q with N=C2xC4 and Q=C2xDic7
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xDic7) = C2xC23:Dic7φ: C2xDic7/C14C4 ⊆ Aut C2xC4112(C2xC4):1(C2xDic7)448,753
(C2xC4):2(C2xDic7) = C24.47D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4):2(C2xDic7)448,484
(C2xC4):3(C2xDic7) = C24.18D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4):3(C2xDic7)448,754
(C2xC4):4(C2xDic7) = C24.38D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4112(C2xC4):4(C2xDic7)448,1251
(C2xC4):5(C2xDic7) = C14.1062- 1+4φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4):5(C2xDic7)448,1280
(C2xC4):6(C2xDic7) = C22:C4xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4):6(C2xDic7)448,475
(C2xC4):7(C2xDic7) = C2xD4xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4):7(C2xDic7)448,1248
(C2xC4):8(C2xDic7) = C4oD4xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4):8(C2xDic7)448,1279
(C2xC4):9(C2xDic7) = C2xC14.C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4):9(C2xDic7)448,742
(C2xC4):10(C2xDic7) = C22xC4:Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4):10(C2xDic7)448,1238
(C2xC4):11(C2xDic7) = C2xC23.21D14φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4):11(C2xDic7)448,1239

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xDic7
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xDic7) = C42:2Dic7φ: C2xDic7/C14C4 ⊆ Aut C2xC41124(C2xC4).1(C2xDic7)448,98
(C2xC4).2(C2xDic7) = C42.Dic7φ: C2xDic7/C14C4 ⊆ Aut C2xC41124(C2xC4).2(C2xDic7)448,99
(C2xC4).3(C2xDic7) = C42:3Dic7φ: C2xDic7/C14C4 ⊆ Aut C2xC4564(C2xC4).3(C2xDic7)448,102
(C2xC4).4(C2xDic7) = C42.3Dic7φ: C2xDic7/C14C4 ⊆ Aut C2xC41124(C2xC4).4(C2xDic7)448,105
(C2xC4).5(C2xDic7) = (D4xC14).16C4φ: C2xDic7/C14C4 ⊆ Aut C2xC41124(C2xC4).5(C2xDic7)448,771
(C2xC4).6(C2xDic7) = (D4xC14):10C4φ: C2xDic7/C14C4 ⊆ Aut C2xC41124(C2xC4).6(C2xDic7)448,774
(C2xC4).7(C2xDic7) = (D4xC14):C4φ: C2xDic7/C14C22 ⊆ Aut C2xC4112(C2xC4).7(C2xDic7)448,94
(C2xC4).8(C2xDic7) = C4:C4:Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC4112(C2xC4).8(C2xDic7)448,95
(C2xC4).9(C2xDic7) = C42.7D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).9(C2xDic7)448,97
(C2xC4).10(C2xDic7) = C42.8D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).10(C2xDic7)448,100
(C2xC4).11(C2xDic7) = C28.9D8φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).11(C2xDic7)448,101
(C2xC4).12(C2xDic7) = C28.5Q16φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).12(C2xDic7)448,103
(C2xC4).13(C2xDic7) = C28.10D8φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).13(C2xDic7)448,104
(C2xC4).14(C2xDic7) = M4(2):Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).14(C2xDic7)448,111
(C2xC4).15(C2xDic7) = M4(2):4Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC41124(C2xC4).15(C2xDic7)448,116
(C2xC4).16(C2xDic7) = C24.8D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).16(C2xDic7)448,485
(C2xC4).17(C2xDic7) = C4:C4:5Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).17(C2xDic7)448,515
(C2xC4).18(C2xDic7) = C4:(C4:Dic7)φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).18(C2xDic7)448,519
(C2xC4).19(C2xDic7) = C42.187D14φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).19(C2xDic7)448,534
(C2xC4).20(C2xDic7) = C28:3M4(2)φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).20(C2xDic7)448,546
(C2xC4).21(C2xDic7) = C23.47D28φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).21(C2xDic7)448,655
(C2xC4).22(C2xDic7) = M4(2).Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC41124(C2xC4).22(C2xDic7)448,659
(C2xC4).23(C2xDic7) = (D4xC14):6C4φ: C2xDic7/C14C22 ⊆ Aut C2xC4112(C2xC4).23(C2xDic7)448,749
(C2xC4).24(C2xDic7) = C2xC28.D4φ: C2xDic7/C14C22 ⊆ Aut C2xC4112(C2xC4).24(C2xDic7)448,750
(C2xC4).25(C2xDic7) = (Q8xC14):6C4φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).25(C2xDic7)448,759
(C2xC4).26(C2xDic7) = C2xC28.10D4φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).26(C2xDic7)448,760
(C2xC4).27(C2xDic7) = (Q8xC14):7C4φ: C2xDic7/C14C22 ⊆ Aut C2xC4448(C2xC4).27(C2xDic7)448,764
(C2xC4).28(C2xDic7) = C4oD4:Dic7φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).28(C2xDic7)448,766
(C2xC4).29(C2xDic7) = (D4xC14):9C4φ: C2xDic7/C14C22 ⊆ Aut C2xC41124(C2xC4).29(C2xDic7)448,770
(C2xC4).30(C2xDic7) = C14.422- 1+4φ: C2xDic7/C14C22 ⊆ Aut C2xC4224(C2xC4).30(C2xDic7)448,1265
(C2xC4).31(C2xDic7) = C28.76C24φ: C2xDic7/C14C22 ⊆ Aut C2xC41124(C2xC4).31(C2xDic7)448,1272
(C2xC4).32(C2xDic7) = C4:C4xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).32(C2xDic7)448,509
(C2xC4).33(C2xDic7) = D4xC7:C8φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).33(C2xDic7)448,544
(C2xC4).34(C2xDic7) = C42.47D14φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).34(C2xDic7)448,545
(C2xC4).35(C2xDic7) = C28.C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).35(C2xDic7)448,86
(C2xC4).36(C2xDic7) = C28.2C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4112(C2xC4).36(C2xDic7)448,89
(C2xC4).37(C2xDic7) = C28.57D8φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).37(C2xDic7)448,91
(C2xC4).38(C2xDic7) = C28.26Q16φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).38(C2xDic7)448,92
(C2xC4).39(C2xDic7) = C28.3C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4112(C2xC4).39(C2xDic7)448,112
(C2xC4).40(C2xDic7) = C28.4C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).40(C2xDic7)448,115
(C2xC4).41(C2xDic7) = C56.92D4φ: C2xDic7/Dic7C2 ⊆ Aut C2xC42244(C2xC4).41(C2xDic7)448,118
(C2xC4).42(C2xDic7) = C28.5C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).42(C2xDic7)448,531
(C2xC4).43(C2xDic7) = C42.43D14φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).43(C2xDic7)448,533
(C2xC4).44(C2xDic7) = Q8xC7:C8φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).44(C2xDic7)448,557
(C2xC4).45(C2xDic7) = C42.210D14φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).45(C2xDic7)448,558
(C2xC4).46(C2xDic7) = M4(2)xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).46(C2xDic7)448,651
(C2xC4).47(C2xDic7) = C28.7C42φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).47(C2xDic7)448,656
(C2xC4).48(C2xDic7) = C56.70C23φ: C2xDic7/Dic7C2 ⊆ Aut C2xC42244(C2xC4).48(C2xDic7)448,674
(C2xC4).49(C2xDic7) = C2xD4:Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).49(C2xDic7)448,748
(C2xC4).50(C2xDic7) = C24.19D14φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).50(C2xDic7)448,755
(C2xC4).51(C2xDic7) = C2xQ8:Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).51(C2xDic7)448,758
(C2xC4).52(C2xDic7) = C28.(C2xD4)φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).52(C2xDic7)448,767
(C2xC4).53(C2xDic7) = (D4xC14).11C4φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).53(C2xDic7)448,768
(C2xC4).54(C2xDic7) = C2xD4:2Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4112(C2xC4).54(C2xDic7)448,769
(C2xC4).55(C2xDic7) = C2xQ8xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4448(C2xC4).55(C2xDic7)448,1264
(C2xC4).56(C2xDic7) = C2xQ8.Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C2xC4224(C2xC4).56(C2xDic7)448,1271
(C2xC4).57(C2xDic7) = C4xC4.Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).57(C2xDic7)448,456
(C2xC4).58(C2xDic7) = C28:7M4(2)φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).58(C2xDic7)448,458
(C2xC4).59(C2xDic7) = C42.7Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).59(C2xDic7)448,460
(C2xC4).60(C2xDic7) = C42:4Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).60(C2xDic7)448,466
(C2xC4).61(C2xDic7) = C4xC4:Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).61(C2xDic7)448,468
(C2xC4).62(C2xDic7) = C42:9Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).62(C2xDic7)448,470
(C2xC4).63(C2xDic7) = C42:5Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).63(C2xDic7)448,471
(C2xC4).64(C2xDic7) = C24.4Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4112(C2xC4).64(C2xDic7)448,741
(C2xC4).65(C2xDic7) = C4xC23.D7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).65(C2xDic7)448,743
(C2xC4).66(C2xDic7) = C24.63D14φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).66(C2xDic7)448,745
(C2xC4).67(C2xDic7) = C56:2C8φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).67(C2xDic7)448,14
(C2xC4).68(C2xDic7) = C56:1C8φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).68(C2xDic7)448,15
(C2xC4).69(C2xDic7) = C56.16Q8φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41122(C2xC4).69(C2xDic7)448,20
(C2xC4).70(C2xDic7) = C28.15C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).70(C2xDic7)448,23
(C2xC4).71(C2xDic7) = C28.8C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4112(C2xC4).71(C2xDic7)448,80
(C2xC4).72(C2xDic7) = C42:Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).72(C2xDic7)448,88
(C2xC4).73(C2xDic7) = C28.9C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).73(C2xDic7)448,108
(C2xC4).74(C2xDic7) = C28.10C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).74(C2xDic7)448,109
(C2xC4).75(C2xDic7) = C56.D4φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).75(C2xDic7)448,110
(C2xC4).76(C2xDic7) = (C2xC56):C4φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).76(C2xDic7)448,113
(C2xC4).77(C2xDic7) = C23.9D28φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).77(C2xDic7)448,114
(C2xC4).78(C2xDic7) = C28.21C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC41124(C2xC4).78(C2xDic7)448,117
(C2xC4).79(C2xDic7) = C42:8Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).79(C2xDic7)448,469
(C2xC4).80(C2xDic7) = C28.12C42φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).80(C2xDic7)448,635
(C2xC4).81(C2xDic7) = C2xC8:Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).81(C2xDic7)448,638
(C2xC4).82(C2xDic7) = C2xC56:1C4φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4448(C2xC4).82(C2xDic7)448,639
(C2xC4).83(C2xDic7) = C23.22D28φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).83(C2xDic7)448,640
(C2xC4).84(C2xDic7) = C2xC56.C4φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).84(C2xDic7)448,641
(C2xC4).85(C2xDic7) = C23.27D28φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).85(C2xDic7)448,746
(C2xC4).86(C2xDic7) = C22xC4.Dic7φ: C2xDic7/C2xC14C2 ⊆ Aut C2xC4224(C2xC4).86(C2xDic7)448,1234
(C2xC4).87(C2xDic7) = C8xC7:C8central extension (φ=1)448(C2xC4).87(C2xDic7)448,10
(C2xC4).88(C2xDic7) = C42.279D14central extension (φ=1)448(C2xC4).88(C2xDic7)448,11
(C2xC4).89(C2xDic7) = C56:C8central extension (φ=1)448(C2xC4).89(C2xDic7)448,12
(C2xC4).90(C2xDic7) = C4xC7:C16central extension (φ=1)448(C2xC4).90(C2xDic7)448,17
(C2xC4).91(C2xDic7) = C56.C8central extension (φ=1)448(C2xC4).91(C2xDic7)448,18
(C2xC4).92(C2xDic7) = C28:C16central extension (φ=1)448(C2xC4).92(C2xDic7)448,19
(C2xC4).93(C2xDic7) = C56.91D4central extension (φ=1)224(C2xC4).93(C2xDic7)448,106
(C2xC4).94(C2xDic7) = (C2xC56):5C4central extension (φ=1)448(C2xC4).94(C2xDic7)448,107
(C2xC4).95(C2xDic7) = C2xC4xC7:C8central extension (φ=1)448(C2xC4).95(C2xDic7)448,454
(C2xC4).96(C2xDic7) = C2xC42.D7central extension (φ=1)448(C2xC4).96(C2xDic7)448,455
(C2xC4).97(C2xDic7) = C2xC28:C8central extension (φ=1)448(C2xC4).97(C2xDic7)448,457
(C2xC4).98(C2xDic7) = C42.6Dic7central extension (φ=1)224(C2xC4).98(C2xDic7)448,459
(C2xC4).99(C2xDic7) = C42xDic7central extension (φ=1)448(C2xC4).99(C2xDic7)448,464
(C2xC4).100(C2xDic7) = C22xC7:C16central extension (φ=1)448(C2xC4).100(C2xDic7)448,630
(C2xC4).101(C2xDic7) = C2xC28.C8central extension (φ=1)224(C2xC4).101(C2xDic7)448,631
(C2xC4).102(C2xDic7) = C2xC8xDic7central extension (φ=1)448(C2xC4).102(C2xDic7)448,632
(C2xC4).103(C2xDic7) = C2xC56:C4central extension (φ=1)448(C2xC4).103(C2xDic7)448,634
(C2xC4).104(C2xDic7) = C2xC28.55D4central extension (φ=1)224(C2xC4).104(C2xDic7)448,740
(C2xC4).105(C2xDic7) = C23xC7:C8central extension (φ=1)448(C2xC4).105(C2xDic7)448,1233

׿
x
:
Z
F
o
wr
Q
<