Extensions 1→N→G→Q→1 with N=C7x2+ 1+4 and Q=C2

Direct product G=NxQ with N=C7x2+ 1+4 and Q=C2
dρLabelID
C14x2+ 1+4112C14xES+(2,2)448,1389

Semidirect products G=N:Q with N=C7x2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7x2+ 1+4):1C2 = 2+ 1+4:D7φ: C2/C1C2 ⊆ Out C7x2+ 1+4568+(C7xES+(2,2)):1C2448,775
(C7x2+ 1+4):2C2 = D28.32C23φ: C2/C1C2 ⊆ Out C7x2+ 1+41128+(C7xES+(2,2)):2C2448,1288
(C7x2+ 1+4):3C2 = D28.33C23φ: C2/C1C2 ⊆ Out C7x2+ 1+41128-(C7xES+(2,2)):3C2448,1289
(C7x2+ 1+4):4C2 = D7x2+ 1+4φ: C2/C1C2 ⊆ Out C7x2+ 1+4568+(C7xES+(2,2)):4C2448,1379
(C7x2+ 1+4):5C2 = D14.C24φ: C2/C1C2 ⊆ Out C7x2+ 1+41128-(C7xES+(2,2)):5C2448,1380
(C7x2+ 1+4):6C2 = 2+ 1+4:2D7φ: C2/C1C2 ⊆ Out C7x2+ 1+4568+(C7xES+(2,2)):6C2448,778
(C7x2+ 1+4):7C2 = C7xD4:4D4φ: C2/C1C2 ⊆ Out C7x2+ 1+4564(C7xES+(2,2)):7C2448,861
(C7x2+ 1+4):8C2 = C7xC2wrC22φ: C2/C1C2 ⊆ Out C7x2+ 1+4564(C7xES+(2,2)):8C2448,865
(C7x2+ 1+4):9C2 = C7xD4oD8φ: C2/C1C2 ⊆ Out C7x2+ 1+41124(C7xES+(2,2)):9C2448,1359
(C7x2+ 1+4):10C2 = C7xD4oSD16φ: C2/C1C2 ⊆ Out C7x2+ 1+41124(C7xES+(2,2)):10C2448,1360
(C7x2+ 1+4):11C2 = C7xC2.C25φ: trivial image1124(C7xES+(2,2)):11C2448,1391

Non-split extensions G=N.Q with N=C7x2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7x2+ 1+4).1C2 = 2+ 1+4.D7φ: C2/C1C2 ⊆ Out C7x2+ 1+41128-(C7xES+(2,2)).1C2448,776
(C7x2+ 1+4).2C2 = 2+ 1+4.2D7φ: C2/C1C2 ⊆ Out C7x2+ 1+41128-(C7xES+(2,2)).2C2448,777
(C7x2+ 1+4).3C2 = C7xD4.9D4φ: C2/C1C2 ⊆ Out C7x2+ 1+41124(C7xES+(2,2)).3C2448,863
(C7x2+ 1+4).4C2 = C7xC23.7D4φ: C2/C1C2 ⊆ Out C7x2+ 1+41124(C7xES+(2,2)).4C2448,866

׿
x
:
Z
F
o
wr
Q
<