Extensions 1→N→G→Q→1 with N=C7x2- 1+4 and Q=C2

Direct product G=NxQ with N=C7x2- 1+4 and Q=C2
dρLabelID
C14x2- 1+4224C14xES-(2,2)448,1390

Semidirect products G=N:Q with N=C7x2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7x2- 1+4):1C2 = 2- 1+4:D7φ: C2/C1C2 ⊆ Out C7x2- 1+41128+(C7xES-(2,2)):1C2448,779
(C7x2- 1+4):2C2 = D28.34C23φ: C2/C1C2 ⊆ Out C7x2- 1+41128+(C7xES-(2,2)):2C2448,1290
(C7x2- 1+4):3C2 = D28.35C23φ: C2/C1C2 ⊆ Out C7x2- 1+42248-(C7xES-(2,2)):3C2448,1291
(C7x2- 1+4):4C2 = D7x2- 1+4φ: C2/C1C2 ⊆ Out C7x2- 1+41128-(C7xES-(2,2)):4C2448,1381
(C7x2- 1+4):5C2 = D28.39C23φ: C2/C1C2 ⊆ Out C7x2- 1+41128+(C7xES-(2,2)):5C2448,1382
(C7x2- 1+4):6C2 = C7xD4.8D4φ: C2/C1C2 ⊆ Out C7x2- 1+41124(C7xES-(2,2)):6C2448,862
(C7x2- 1+4):7C2 = C7xD4oSD16φ: C2/C1C2 ⊆ Out C7x2- 1+41124(C7xES-(2,2)):7C2448,1360
(C7x2- 1+4):8C2 = C7xQ8oD8φ: C2/C1C2 ⊆ Out C7x2- 1+42244(C7xES-(2,2)):8C2448,1361
(C7x2- 1+4):9C2 = C7xC2.C25φ: trivial image1124(C7xES-(2,2)):9C2448,1391

Non-split extensions G=N.Q with N=C7x2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7x2- 1+4).1C2 = 2- 1+4.D7φ: C2/C1C2 ⊆ Out C7x2- 1+41128-(C7xES-(2,2)).1C2448,780
(C7x2- 1+4).2C2 = C7xD4.10D4φ: C2/C1C2 ⊆ Out C7x2- 1+41124(C7xES-(2,2)).2C2448,864

׿
x
:
Z
F
o
wr
Q
<