Extensions 1→N→G→Q→1 with N=C38 and Q=D6

Direct product G=NxQ with N=C38 and Q=D6
dρLabelID
S3xC2xC38228S3xC2xC38456,52

Semidirect products G=N:Q with N=C38 and Q=D6
extensionφ:Q→Aut NdρLabelID
C38:1D6 = C2xS3xD19φ: D6/S3C2 ⊆ Aut C381144+C38:1D6456,47
C38:2D6 = C22xD57φ: D6/C6C2 ⊆ Aut C38228C38:2D6456,53

Non-split extensions G=N.Q with N=C38 and Q=D6
extensionφ:Q→Aut NdρLabelID
C38.1D6 = Dic3xD19φ: D6/S3C2 ⊆ Aut C382284-C38.1D6456,12
C38.2D6 = S3xDic19φ: D6/S3C2 ⊆ Aut C382284-C38.2D6456,13
C38.3D6 = D57:C4φ: D6/S3C2 ⊆ Aut C382284+C38.3D6456,14
C38.4D6 = C57:D4φ: D6/S3C2 ⊆ Aut C382284-C38.4D6456,15
C38.5D6 = C3:D76φ: D6/S3C2 ⊆ Aut C382284+C38.5D6456,16
C38.6D6 = C19:D12φ: D6/S3C2 ⊆ Aut C382284+C38.6D6456,17
C38.7D6 = C57:Q8φ: D6/S3C2 ⊆ Aut C384564-C38.7D6456,18
C38.8D6 = Dic114φ: D6/C6C2 ⊆ Aut C384562-C38.8D6456,34
C38.9D6 = C4xD57φ: D6/C6C2 ⊆ Aut C382282C38.9D6456,35
C38.10D6 = D228φ: D6/C6C2 ⊆ Aut C382282+C38.10D6456,36
C38.11D6 = C2xDic57φ: D6/C6C2 ⊆ Aut C38456C38.11D6456,37
C38.12D6 = C57:7D4φ: D6/C6C2 ⊆ Aut C382282C38.12D6456,38
C38.13D6 = C19xDic6central extension (φ=1)4562C38.13D6456,29
C38.14D6 = S3xC76central extension (φ=1)2282C38.14D6456,30
C38.15D6 = C19xD12central extension (φ=1)2282C38.15D6456,31
C38.16D6 = Dic3xC38central extension (φ=1)456C38.16D6456,32
C38.17D6 = C19xC3:D4central extension (φ=1)2282C38.17D6456,33

׿
x
:
Z
F
o
wr
Q
<