Direct product G=NxQ with N=C38 and Q=D6
Semidirect products G=N:Q with N=C38 and Q=D6
Non-split extensions G=N.Q with N=C38 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C38.1D6 = Dic3xD19 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4- | C38.1D6 | 456,12 |
C38.2D6 = S3xDic19 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4- | C38.2D6 | 456,13 |
C38.3D6 = D57:C4 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4+ | C38.3D6 | 456,14 |
C38.4D6 = C57:D4 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4- | C38.4D6 | 456,15 |
C38.5D6 = C3:D76 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4+ | C38.5D6 | 456,16 |
C38.6D6 = C19:D12 | φ: D6/S3 → C2 ⊆ Aut C38 | 228 | 4+ | C38.6D6 | 456,17 |
C38.7D6 = C57:Q8 | φ: D6/S3 → C2 ⊆ Aut C38 | 456 | 4- | C38.7D6 | 456,18 |
C38.8D6 = Dic114 | φ: D6/C6 → C2 ⊆ Aut C38 | 456 | 2- | C38.8D6 | 456,34 |
C38.9D6 = C4xD57 | φ: D6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.9D6 | 456,35 |
C38.10D6 = D228 | φ: D6/C6 → C2 ⊆ Aut C38 | 228 | 2+ | C38.10D6 | 456,36 |
C38.11D6 = C2xDic57 | φ: D6/C6 → C2 ⊆ Aut C38 | 456 | | C38.11D6 | 456,37 |
C38.12D6 = C57:7D4 | φ: D6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.12D6 | 456,38 |
C38.13D6 = C19xDic6 | central extension (φ=1) | 456 | 2 | C38.13D6 | 456,29 |
C38.14D6 = S3xC76 | central extension (φ=1) | 228 | 2 | C38.14D6 | 456,30 |
C38.15D6 = C19xD12 | central extension (φ=1) | 228 | 2 | C38.15D6 | 456,31 |
C38.16D6 = Dic3xC38 | central extension (φ=1) | 456 | | C38.16D6 | 456,32 |
C38.17D6 = C19xC3:D4 | central extension (φ=1) | 228 | 2 | C38.17D6 | 456,33 |
x
:
Z
F
o
wr
Q
<