direct product, non-abelian, not soluble
Aliases: C4xS5, CO3(F5), (C2xS5).C2, A5:C4:2C2, (C4xA5):3C2, A5:1(C2xC4), C2.1(C2xS5), (C2xA5).1C22, SmallGroup(480,943)
Series: Chief►Derived ►Lower central ►Upper central
A5 — C4xS5 |
A5 — C4xS5 |
Subgroups: 956 in 98 conjugacy classes, 11 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2xC4, D4, C23, D5, C10, Dic3, C12, A4, D6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, Dic5, C20, F5, D10, C4xS3, C2xDic3, C2xC12, S4, C2xA4, C22xS3, C4xD4, C4xD5, C2xF5, A4:C4, C4xA4, S3xC2xC4, C2xS4, A5, C4xF5, C4xS4, S5, C2xA5, A5:C4, C4xA5, C2xS5, C4xS5
Quotients: C1, C2, C4, C22, C2xC4, S5, C2xS5, C4xS5
Character table of C4xS5
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 6A | 6B | 6C | 10 | 12A | 12B | 12C | 12D | 20A | 20B | |
size | 1 | 1 | 10 | 10 | 15 | 15 | 20 | 1 | 1 | 10 | 10 | 15 | 15 | 30 | 30 | 30 | 30 | 24 | 20 | 20 | 20 | 24 | 20 | 20 | 20 | 20 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | -i | -i | i | linear of order 4 |
ρ9 | 4 | 4 | 2 | 2 | 0 | 0 | 1 | 4 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ10 | 4 | 4 | 2 | 2 | 0 | 0 | 1 | -4 | -4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2xS5 |
ρ11 | 4 | 4 | -2 | -2 | 0 | 0 | 1 | 4 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from S5 |
ρ12 | 4 | 4 | -2 | -2 | 0 | 0 | 1 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2xS5 |
ρ13 | 4 | -4 | 2 | -2 | 0 | 0 | 1 | 4i | -4i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | complex faithful |
ρ14 | 4 | -4 | 2 | -2 | 0 | 0 | 1 | -4i | 4i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | complex faithful |
ρ15 | 4 | -4 | -2 | 2 | 0 | 0 | 1 | 4i | -4i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | complex faithful |
ρ16 | 4 | -4 | -2 | 2 | 0 | 0 | 1 | -4i | 4i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | complex faithful |
ρ17 | 5 | 5 | -1 | -1 | 1 | 1 | -1 | 5 | 5 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S5 |
ρ18 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 0 | 1 | -1 | 1 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from S5 |
ρ19 | 5 | 5 | -1 | -1 | 1 | 1 | -1 | -5 | -5 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from C2xS5 |
ρ20 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | -5 | -5 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | 1 | -1 | 1 | 0 | 1 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from C2xS5 |
ρ21 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | -5i | 5i | i | -i | -i | i | -i | i | -1 | 1 | 0 | -1 | 1 | 1 | 0 | -i | i | -i | i | 0 | 0 | complex faithful |
ρ22 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | -5i | 5i | -i | i | -i | i | i | -i | 1 | -1 | 0 | 1 | 1 | -1 | 0 | -i | i | i | -i | 0 | 0 | complex faithful |
ρ23 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | 5i | -5i | i | -i | i | -i | -i | i | 1 | -1 | 0 | 1 | 1 | -1 | 0 | i | -i | -i | i | 0 | 0 | complex faithful |
ρ24 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | 5i | -5i | -i | i | i | -i | i | -i | -1 | 1 | 0 | -1 | 1 | 1 | 0 | i | -i | i | -i | 0 | 0 | complex faithful |
ρ25 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from S5 |
ρ26 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | -6 | -6 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C2xS5 |
ρ27 | 6 | -6 | 0 | 0 | 2 | -2 | 0 | 6i | -6i | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | i | -i | complex faithful |
ρ28 | 6 | -6 | 0 | 0 | 2 | -2 | 0 | -6i | 6i | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -i | i | complex faithful |
(1 8 12 15)(2 17 13 3)(4 9 18 6)(5 20 10 7)(11 16 14 19)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14)(15 16 17 18 19 20)
G:=sub<Sym(20)| (1,8,12,15)(2,17,13,3)(4,9,18,6)(5,20,10,7)(11,16,14,19), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)>;
G:=Group( (1,8,12,15)(2,17,13,3)(4,9,18,6)(5,20,10,7)(11,16,14,19), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20) );
G=PermutationGroup([[(1,8,12,15),(2,17,13,3),(4,9,18,6),(5,20,10,7),(11,16,14,19)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14),(15,16,17,18,19,20)]])
G:=TransitiveGroup(20,123);
(1 16 4 9)(2 17 23 14)(3 10 20 13)(5 12 22 15)(6 11 19 8)(7 21 18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,16,4,9)(2,17,23,14)(3,10,20,13)(5,12,22,15)(6,11,19,8)(7,21,18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,16,4,9)(2,17,23,14)(3,10,20,13)(5,12,22,15)(6,11,19,8)(7,21,18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,16,4,9),(2,17,23,14),(3,10,20,13),(5,12,22,15),(6,11,19,8),(7,21,18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,1347);
(1 15 13 9)(2 16 22 20)(4 24 8 6)(5 21)(7 11 17 23)(12 14)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,15,13,9)(2,16,22,20)(4,24,8,6)(5,21)(7,11,17,23)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,15,13,9)(2,16,22,20)(4,24,8,6)(5,21)(7,11,17,23)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,15,13,9),(2,16,22,20),(4,24,8,6),(5,21),(7,11,17,23),(12,14)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,1348);
Matrix representation of C4xS5 ►in GL3(F5) generated by
3 | 0 | 1 |
3 | 4 | 0 |
3 | 0 | 0 |
0 | 3 | 3 |
0 | 3 | 2 |
3 | 3 | 4 |
G:=sub<GL(3,GF(5))| [3,3,3,0,4,0,1,0,0],[0,0,3,3,3,3,3,2,4] >;
C4xS5 in GAP, Magma, Sage, TeX
C_4\times S_5
% in TeX
G:=Group("C4xS5");
// GroupNames label
G:=SmallGroup(480,943);
// by ID
G=gap.SmallGroup(480,943);
# by ID
Export