Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C2xC10

Direct product G=NxQ with N=C4xS3 and Q=C2xC10
dρLabelID
S3xC22xC20240S3xC2^2xC20480,1151

Semidirect products G=N:Q with N=C4xS3 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C4xS3):1(C2xC10) = C5xD4:6D6φ: C2xC10/C5C22 ⊆ Out C4xS31204(C4xS3):1(C2xC10)480,1156
(C4xS3):2(C2xC10) = C5xD4oD12φ: C2xC10/C5C22 ⊆ Out C4xS31204(C4xS3):2(C2xC10)480,1161
(C4xS3):3(C2xC10) = S3xD4xC10φ: C2xC10/C10C2 ⊆ Out C4xS3120(C4xS3):3(C2xC10)480,1154
(C4xS3):4(C2xC10) = C10xD4:2S3φ: C2xC10/C10C2 ⊆ Out C4xS3240(C4xS3):4(C2xC10)480,1155
(C4xS3):5(C2xC10) = C10xQ8:3S3φ: C2xC10/C10C2 ⊆ Out C4xS3240(C4xS3):5(C2xC10)480,1158
(C4xS3):6(C2xC10) = C10xC4oD12φ: C2xC10/C10C2 ⊆ Out C4xS3240(C4xS3):6(C2xC10)480,1153
(C4xS3):7(C2xC10) = C5xS3xC4oD4φ: C2xC10/C10C2 ⊆ Out C4xS31204(C4xS3):7(C2xC10)480,1160

Non-split extensions G=N.Q with N=C4xS3 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C4xS3).1(C2xC10) = C5xD8:S3φ: C2xC10/C5C22 ⊆ Out C4xS31204(C4xS3).1(C2xC10)480,790
(C4xS3).2(C2xC10) = C5xQ8:3D6φ: C2xC10/C5C22 ⊆ Out C4xS31204(C4xS3).2(C2xC10)480,793
(C4xS3).3(C2xC10) = C5xD4.D6φ: C2xC10/C5C22 ⊆ Out C4xS32404(C4xS3).3(C2xC10)480,794
(C4xS3).4(C2xC10) = C5xQ16:S3φ: C2xC10/C5C22 ⊆ Out C4xS32404(C4xS3).4(C2xC10)480,797
(C4xS3).5(C2xC10) = C5xQ8.15D6φ: C2xC10/C5C22 ⊆ Out C4xS32404(C4xS3).5(C2xC10)480,1159
(C4xS3).6(C2xC10) = C5xQ8oD12φ: C2xC10/C5C22 ⊆ Out C4xS32404(C4xS3).6(C2xC10)480,1162
(C4xS3).7(C2xC10) = C5xS3xD8φ: C2xC10/C10C2 ⊆ Out C4xS31204(C4xS3).7(C2xC10)480,789
(C4xS3).8(C2xC10) = C5xD8:3S3φ: C2xC10/C10C2 ⊆ Out C4xS32404(C4xS3).8(C2xC10)480,791
(C4xS3).9(C2xC10) = C5xS3xSD16φ: C2xC10/C10C2 ⊆ Out C4xS31204(C4xS3).9(C2xC10)480,792
(C4xS3).10(C2xC10) = C5xQ8.7D6φ: C2xC10/C10C2 ⊆ Out C4xS32404(C4xS3).10(C2xC10)480,795
(C4xS3).11(C2xC10) = C5xS3xQ16φ: C2xC10/C10C2 ⊆ Out C4xS32404(C4xS3).11(C2xC10)480,796
(C4xS3).12(C2xC10) = C5xD24:C2φ: C2xC10/C10C2 ⊆ Out C4xS32404(C4xS3).12(C2xC10)480,798
(C4xS3).13(C2xC10) = S3xQ8xC10φ: C2xC10/C10C2 ⊆ Out C4xS3240(C4xS3).13(C2xC10)480,1157
(C4xS3).14(C2xC10) = C10xC8:S3φ: C2xC10/C10C2 ⊆ Out C4xS3240(C4xS3).14(C2xC10)480,779
(C4xS3).15(C2xC10) = C5xC8oD12φ: C2xC10/C10C2 ⊆ Out C4xS32402(C4xS3).15(C2xC10)480,780
(C4xS3).16(C2xC10) = C5xS3xM4(2)φ: C2xC10/C10C2 ⊆ Out C4xS31204(C4xS3).16(C2xC10)480,785
(C4xS3).17(C2xC10) = C5xD12.C4φ: C2xC10/C10C2 ⊆ Out C4xS32404(C4xS3).17(C2xC10)480,786
(C4xS3).18(C2xC10) = S3xC2xC40φ: trivial image240(C4xS3).18(C2xC10)480,778

׿
x
:
Z
F
o
wr
Q
<