Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2xC20

Direct product G=NxQ with N=Dic3 and Q=C2xC20
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=Dic3 and Q=C2xC20
extensionφ:Q→Out NdρLabelID
Dic3:1(C2xC20) = C5xDic3:4D4φ: C2xC20/C20C2 ⊆ Out Dic3240Dic3:1(C2xC20)480,760
Dic3:2(C2xC20) = C20xC3:D4φ: C2xC20/C20C2 ⊆ Out Dic3240Dic3:2(C2xC20)480,807
Dic3:3(C2xC20) = C5xS3xC4:C4φ: C2xC20/C2xC10C2 ⊆ Out Dic3240Dic3:3(C2xC20)480,770
Dic3:4(C2xC20) = C10xDic3:C4φ: C2xC20/C2xC10C2 ⊆ Out Dic3480Dic3:4(C2xC20)480,802
Dic3:5(C2xC20) = S3xC4xC20φ: trivial image240Dic3:5(C2xC20)480,750

Non-split extensions G=N.Q with N=Dic3 and Q=C2xC20
extensionφ:Q→Out NdρLabelID
Dic3.1(C2xC20) = C20xDic6φ: C2xC20/C20C2 ⊆ Out Dic3480Dic3.1(C2xC20)480,747
Dic3.2(C2xC20) = C5xDic6:C4φ: C2xC20/C20C2 ⊆ Out Dic3480Dic3.2(C2xC20)480,766
Dic3.3(C2xC20) = C5xC8oD12φ: C2xC20/C20C2 ⊆ Out Dic32402Dic3.3(C2xC20)480,780
Dic3.4(C2xC20) = C5xD12.C4φ: C2xC20/C20C2 ⊆ Out Dic32404Dic3.4(C2xC20)480,786
Dic3.5(C2xC20) = C5xC42:2S3φ: C2xC20/C2xC10C2 ⊆ Out Dic3240Dic3.5(C2xC20)480,751
Dic3.6(C2xC20) = C5xC23.16D6φ: C2xC20/C2xC10C2 ⊆ Out Dic3240Dic3.6(C2xC20)480,756
Dic3.7(C2xC20) = C10xC8:S3φ: C2xC20/C2xC10C2 ⊆ Out Dic3240Dic3.7(C2xC20)480,779
Dic3.8(C2xC20) = C5xS3xM4(2)φ: C2xC20/C2xC10C2 ⊆ Out Dic31204Dic3.8(C2xC20)480,785
Dic3.9(C2xC20) = C5xC4:C4:7S3φ: trivial image240Dic3.9(C2xC20)480,771
Dic3.10(C2xC20) = S3xC2xC40φ: trivial image240Dic3.10(C2xC20)480,778

׿
x
:
Z
F
o
wr
Q
<