Extensions 1→N→G→Q→1 with N=C3xD4 and Q=D10

Direct product G=NxQ with N=C3xD4 and Q=D10
dρLabelID
C6xD4xD5120C6xD4xD5480,1139

Semidirect products G=N:Q with N=C3xD4 and Q=D10
extensionφ:Q→Out NdρLabelID
(C3xD4):1D10 = S3xD4:D5φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4):1D10480,555
(C3xD4):2D10 = D60.C22φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4):2D10480,556
(C3xD4):3D10 = D15:D8φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4):3D10480,557
(C3xD4):4D10 = D30.8D4φ: D10/C5C22 ⊆ Out C3xD41208-(C3xD4):4D10480,558
(C3xD4):5D10 = D8xD15φ: D10/C5C22 ⊆ Out C3xD41204+(C3xD4):5D10480,875
(C3xD4):6D10 = D8:D15φ: D10/C5C22 ⊆ Out C3xD41204(C3xD4):6D10480,876
(C3xD4):7D10 = D5xD4:S3φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4):7D10480,553
(C3xD4):8D10 = Dic10:3D6φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4):8D10480,554
(C3xD4):9D10 = S3xD4xD5φ: D10/D5C2 ⊆ Out C3xD4608+(C3xD4):9D10480,1097
(C3xD4):10D10 = D5xD4:2S3φ: D10/D5C2 ⊆ Out C3xD41208-(C3xD4):10D10480,1098
(C3xD4):11D10 = S3xD4:2D5φ: D10/D5C2 ⊆ Out C3xD41208-(C3xD4):11D10480,1099
(C3xD4):12D10 = D30.C23φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4):12D10480,1100
(C3xD4):13D10 = D20:13D6φ: D10/D5C2 ⊆ Out C3xD41208-(C3xD4):13D10480,1101
(C3xD4):14D10 = D20:14D6φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4):14D10480,1102
(C3xD4):15D10 = D12:14D10φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4):15D10480,1103
(C3xD4):16D10 = C3xD5xD8φ: D10/D5C2 ⊆ Out C3xD41204(C3xD4):16D10480,703
(C3xD4):17D10 = C3xD8:D5φ: D10/D5C2 ⊆ Out C3xD41204(C3xD4):17D10480,704
(C3xD4):18D10 = C2xD4:D15φ: D10/C10C2 ⊆ Out C3xD4240(C3xD4):18D10480,896
(C3xD4):19D10 = D4:D30φ: D10/C10C2 ⊆ Out C3xD41204+(C3xD4):19D10480,914
(C3xD4):20D10 = C2xD4xD15φ: D10/C10C2 ⊆ Out C3xD4120(C3xD4):20D10480,1169
(C3xD4):21D10 = C2xD4:2D15φ: D10/C10C2 ⊆ Out C3xD4240(C3xD4):21D10480,1170
(C3xD4):22D10 = D4:6D30φ: D10/C10C2 ⊆ Out C3xD41204(C3xD4):22D10480,1171
(C3xD4):23D10 = C4oD4xD15φ: D10/C10C2 ⊆ Out C3xD41204(C3xD4):23D10480,1175
(C3xD4):24D10 = D4:8D30φ: D10/C10C2 ⊆ Out C3xD41204+(C3xD4):24D10480,1176
(C3xD4):25D10 = C6xD4:D5φ: D10/C10C2 ⊆ Out C3xD4240(C3xD4):25D10480,724
(C3xD4):26D10 = C3xD4:D10φ: D10/C10C2 ⊆ Out C3xD41204(C3xD4):26D10480,742
(C3xD4):27D10 = C6xD4:2D5φ: trivial image240(C3xD4):27D10480,1140
(C3xD4):28D10 = C3xD4:6D10φ: trivial image1204(C3xD4):28D10480,1141
(C3xD4):29D10 = C3xD5xC4oD4φ: trivial image1204(C3xD4):29D10480,1145
(C3xD4):30D10 = C3xD4:8D10φ: trivial image1204(C3xD4):30D10480,1146

Non-split extensions G=N.Q with N=C3xD4 and Q=D10
extensionφ:Q→Out NdρLabelID
(C3xD4).1D10 = S3xD4.D5φ: D10/C5C22 ⊆ Out C3xD41208-(C3xD4).1D10480,561
(C3xD4).2D10 = C60.10C23φ: D10/C5C22 ⊆ Out C3xD42408-(C3xD4).2D10480,562
(C3xD4).3D10 = Dic10:D6φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4).3D10480,563
(C3xD4).4D10 = D30.9D4φ: D10/C5C22 ⊆ Out C3xD42408-(C3xD4).4D10480,564
(C3xD4).5D10 = D20.24D6φ: D10/C5C22 ⊆ Out C3xD42408-(C3xD4).5D10480,569
(C3xD4).6D10 = D20:10D6φ: D10/C5C22 ⊆ Out C3xD41208-(C3xD4).6D10480,570
(C3xD4).7D10 = C60.19C23φ: D10/C5C22 ⊆ Out C3xD42408+(C3xD4).7D10480,571
(C3xD4).8D10 = D12.9D10φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4).8D10480,572
(C3xD4).9D10 = D20.10D6φ: D10/C5C22 ⊆ Out C3xD42408-(C3xD4).9D10480,573
(C3xD4).10D10 = Dic6:D10φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4).10D10480,574
(C3xD4).11D10 = D30.11D4φ: D10/C5C22 ⊆ Out C3xD42408-(C3xD4).11D10480,575
(C3xD4).12D10 = D12:5D10φ: D10/C5C22 ⊆ Out C3xD41208+(C3xD4).12D10480,576
(C3xD4).13D10 = D8:3D15φ: D10/C5C22 ⊆ Out C3xD42404-(C3xD4).13D10480,877
(C3xD4).14D10 = SD16xD15φ: D10/C5C22 ⊆ Out C3xD41204(C3xD4).14D10480,878
(C3xD4).15D10 = Q8:3D30φ: D10/C5C22 ⊆ Out C3xD41204+(C3xD4).15D10480,879
(C3xD4).16D10 = SD16:D15φ: D10/C5C22 ⊆ Out C3xD42404-(C3xD4).16D10480,880
(C3xD4).17D10 = D4.5D30φ: D10/C5C22 ⊆ Out C3xD42404(C3xD4).17D10480,881
(C3xD4).18D10 = D5xD4.S3φ: D10/D5C2 ⊆ Out C3xD41208-(C3xD4).18D10480,559
(C3xD4).19D10 = C60.8C23φ: D10/D5C2 ⊆ Out C3xD42408-(C3xD4).19D10480,560
(C3xD4).20D10 = D12:10D10φ: D10/D5C2 ⊆ Out C3xD41208-(C3xD4).20D10480,565
(C3xD4).21D10 = D12.24D10φ: D10/D5C2 ⊆ Out C3xD42408-(C3xD4).21D10480,566
(C3xD4).22D10 = D20.9D6φ: D10/D5C2 ⊆ Out C3xD41208+(C3xD4).22D10480,567
(C3xD4).23D10 = C60.16C23φ: D10/D5C2 ⊆ Out C3xD42408+(C3xD4).23D10480,568
(C3xD4).24D10 = C15:2- 1+4φ: D10/D5C2 ⊆ Out C3xD42408-(C3xD4).24D10480,1096
(C3xD4).25D10 = C3xD8:3D5φ: D10/D5C2 ⊆ Out C3xD42404(C3xD4).25D10480,705
(C3xD4).26D10 = C3xD5xSD16φ: D10/D5C2 ⊆ Out C3xD41204(C3xD4).26D10480,706
(C3xD4).27D10 = C3xD40:C2φ: D10/D5C2 ⊆ Out C3xD41204(C3xD4).27D10480,707
(C3xD4).28D10 = C3xSD16:D5φ: D10/D5C2 ⊆ Out C3xD42404(C3xD4).28D10480,708
(C3xD4).29D10 = C3xSD16:3D5φ: D10/D5C2 ⊆ Out C3xD42404(C3xD4).29D10480,709
(C3xD4).30D10 = D4.D30φ: D10/C10C2 ⊆ Out C3xD41204(C3xD4).30D10480,897
(C3xD4).31D10 = C2xD4.D15φ: D10/C10C2 ⊆ Out C3xD4240(C3xD4).31D10480,898
(C3xD4).32D10 = D4.8D30φ: D10/C10C2 ⊆ Out C3xD42404(C3xD4).32D10480,915
(C3xD4).33D10 = D4.9D30φ: D10/C10C2 ⊆ Out C3xD42404-(C3xD4).33D10480,916
(C3xD4).34D10 = D4.10D30φ: D10/C10C2 ⊆ Out C3xD42404-(C3xD4).34D10480,1177
(C3xD4).35D10 = C3xD4.D10φ: D10/C10C2 ⊆ Out C3xD41204(C3xD4).35D10480,725
(C3xD4).36D10 = C6xD4.D5φ: D10/C10C2 ⊆ Out C3xD4240(C3xD4).36D10480,726
(C3xD4).37D10 = C3xD4.8D10φ: D10/C10C2 ⊆ Out C3xD42404(C3xD4).37D10480,743
(C3xD4).38D10 = C3xD4.9D10φ: D10/C10C2 ⊆ Out C3xD42404(C3xD4).38D10480,744
(C3xD4).39D10 = C3xD4.10D10φ: trivial image2404(C3xD4).39D10480,1147

׿
x
:
Z
F
o
wr
Q
<