Extensions 1→N→G→Q→1 with N=D4 and Q=S3xC10

Direct product G=NxQ with N=D4 and Q=S3xC10
dρLabelID
S3xD4xC10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=D4 and Q=S3xC10
extensionφ:Q→Out NdρLabelID
D4:1(S3xC10) = C5xS3xD8φ: S3xC10/C5xS3C2 ⊆ Out D41204D4:1(S3xC10)480,789
D4:2(S3xC10) = C5xD8:S3φ: S3xC10/C5xS3C2 ⊆ Out D41204D4:2(S3xC10)480,790
D4:3(S3xC10) = C10xD4:S3φ: S3xC10/C30C2 ⊆ Out D4240D4:3(S3xC10)480,810
D4:4(S3xC10) = C5xD4:D6φ: S3xC10/C30C2 ⊆ Out D41204D4:4(S3xC10)480,828
D4:5(S3xC10) = C10xD4:2S3φ: trivial image240D4:5(S3xC10)480,1155
D4:6(S3xC10) = C5xD4:6D6φ: trivial image1204D4:6(S3xC10)480,1156
D4:7(S3xC10) = C5xS3xC4oD4φ: trivial image1204D4:7(S3xC10)480,1160
D4:8(S3xC10) = C5xD4oD12φ: trivial image1204D4:8(S3xC10)480,1161

Non-split extensions G=N.Q with N=D4 and Q=S3xC10
extensionφ:Q→Out NdρLabelID
D4.1(S3xC10) = C5xD8:3S3φ: S3xC10/C5xS3C2 ⊆ Out D42404D4.1(S3xC10)480,791
D4.2(S3xC10) = C5xS3xSD16φ: S3xC10/C5xS3C2 ⊆ Out D41204D4.2(S3xC10)480,792
D4.3(S3xC10) = C5xQ8:3D6φ: S3xC10/C5xS3C2 ⊆ Out D41204D4.3(S3xC10)480,793
D4.4(S3xC10) = C5xD4.D6φ: S3xC10/C5xS3C2 ⊆ Out D42404D4.4(S3xC10)480,794
D4.5(S3xC10) = C5xQ8.7D6φ: S3xC10/C5xS3C2 ⊆ Out D42404D4.5(S3xC10)480,795
D4.6(S3xC10) = C5xD12:6C22φ: S3xC10/C30C2 ⊆ Out D41204D4.6(S3xC10)480,811
D4.7(S3xC10) = C10xD4.S3φ: S3xC10/C30C2 ⊆ Out D4240D4.7(S3xC10)480,812
D4.8(S3xC10) = C5xQ8.13D6φ: S3xC10/C30C2 ⊆ Out D42404D4.8(S3xC10)480,829
D4.9(S3xC10) = C5xQ8.14D6φ: S3xC10/C30C2 ⊆ Out D42404D4.9(S3xC10)480,830
D4.10(S3xC10) = C5xQ8oD12φ: trivial image2404D4.10(S3xC10)480,1162

׿
x
:
Z
F
o
wr
Q
<