Extensions 1→N→G→Q→1 with N=C3xQ8 and Q=C2xC10

Direct product G=NxQ with N=C3xQ8 and Q=C2xC10
dρLabelID
Q8xC2xC30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=C3xQ8 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C3xQ8):1(C2xC10) = C5xS3xSD16φ: C2xC10/C5C22 ⊆ Out C3xQ81204(C3xQ8):1(C2xC10)480,792
(C3xQ8):2(C2xC10) = C5xQ8:3D6φ: C2xC10/C5C22 ⊆ Out C3xQ81204(C3xQ8):2(C2xC10)480,793
(C3xQ8):3(C2xC10) = C10xQ8:2S3φ: C2xC10/C10C2 ⊆ Out C3xQ8240(C3xQ8):3(C2xC10)480,820
(C3xQ8):4(C2xC10) = C5xD4:D6φ: C2xC10/C10C2 ⊆ Out C3xQ81204(C3xQ8):4(C2xC10)480,828
(C3xQ8):5(C2xC10) = S3xQ8xC10φ: C2xC10/C10C2 ⊆ Out C3xQ8240(C3xQ8):5(C2xC10)480,1157
(C3xQ8):6(C2xC10) = C10xQ8:3S3φ: C2xC10/C10C2 ⊆ Out C3xQ8240(C3xQ8):6(C2xC10)480,1158
(C3xQ8):7(C2xC10) = C5xS3xC4oD4φ: C2xC10/C10C2 ⊆ Out C3xQ81204(C3xQ8):7(C2xC10)480,1160
(C3xQ8):8(C2xC10) = C5xD4oD12φ: C2xC10/C10C2 ⊆ Out C3xQ81204(C3xQ8):8(C2xC10)480,1161
(C3xQ8):9(C2xC10) = SD16xC30φ: C2xC10/C10C2 ⊆ Out C3xQ8240(C3xQ8):9(C2xC10)480,938
(C3xQ8):10(C2xC10) = C15xC8:C22φ: C2xC10/C10C2 ⊆ Out C3xQ81204(C3xQ8):10(C2xC10)480,941
(C3xQ8):11(C2xC10) = C4oD4xC30φ: trivial image240(C3xQ8):11(C2xC10)480,1183
(C3xQ8):12(C2xC10) = C15x2+ 1+4φ: trivial image1204(C3xQ8):12(C2xC10)480,1184

Non-split extensions G=N.Q with N=C3xQ8 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C3xQ8).1(C2xC10) = C5xD4.D6φ: C2xC10/C5C22 ⊆ Out C3xQ82404(C3xQ8).1(C2xC10)480,794
(C3xQ8).2(C2xC10) = C5xQ8.7D6φ: C2xC10/C5C22 ⊆ Out C3xQ82404(C3xQ8).2(C2xC10)480,795
(C3xQ8).3(C2xC10) = C5xS3xQ16φ: C2xC10/C5C22 ⊆ Out C3xQ82404(C3xQ8).3(C2xC10)480,796
(C3xQ8).4(C2xC10) = C5xQ16:S3φ: C2xC10/C5C22 ⊆ Out C3xQ82404(C3xQ8).4(C2xC10)480,797
(C3xQ8).5(C2xC10) = C5xD24:C2φ: C2xC10/C5C22 ⊆ Out C3xQ82404(C3xQ8).5(C2xC10)480,798
(C3xQ8).6(C2xC10) = C5xQ8.11D6φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).6(C2xC10)480,821
(C3xQ8).7(C2xC10) = C10xC3:Q16φ: C2xC10/C10C2 ⊆ Out C3xQ8480(C3xQ8).7(C2xC10)480,822
(C3xQ8).8(C2xC10) = C5xQ8.13D6φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).8(C2xC10)480,829
(C3xQ8).9(C2xC10) = C5xQ8.14D6φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).9(C2xC10)480,830
(C3xQ8).10(C2xC10) = C5xQ8.15D6φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).10(C2xC10)480,1159
(C3xQ8).11(C2xC10) = C5xQ8oD12φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).11(C2xC10)480,1162
(C3xQ8).12(C2xC10) = Q16xC30φ: C2xC10/C10C2 ⊆ Out C3xQ8480(C3xQ8).12(C2xC10)480,939
(C3xQ8).13(C2xC10) = C15xC4oD8φ: C2xC10/C10C2 ⊆ Out C3xQ82402(C3xQ8).13(C2xC10)480,940
(C3xQ8).14(C2xC10) = C15xC8.C22φ: C2xC10/C10C2 ⊆ Out C3xQ82404(C3xQ8).14(C2xC10)480,942
(C3xQ8).15(C2xC10) = C15x2- 1+4φ: trivial image2404(C3xQ8).15(C2xC10)480,1185

׿
x
:
Z
F
o
wr
Q
<