Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C3xQ8

Direct product G=NxQ with N=C2xC10 and Q=C3xQ8
dρLabelID
Q8xC2xC30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=C2xC10 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC10):(C3xQ8) = A4xDic10φ: C3xQ8/C4C6 ⊆ Aut C2xC101206-(C2xC10):(C3xQ8)480,1035
(C2xC10):2(C3xQ8) = C3xDic5.14D4φ: C3xQ8/C6C22 ⊆ Aut C2xC10240(C2xC10):2(C3xQ8)480,671
(C2xC10):3(C3xQ8) = C5xQ8xA4φ: C3xQ8/Q8C3 ⊆ Aut C2xC101206(C2xC10):3(C3xQ8)480,1129
(C2xC10):4(C3xQ8) = C15xC22:Q8φ: C3xQ8/C12C2 ⊆ Aut C2xC10240(C2xC10):4(C3xQ8)480,927
(C2xC10):5(C3xQ8) = C3xC20.48D4φ: C3xQ8/C12C2 ⊆ Aut C2xC10240(C2xC10):5(C3xQ8)480,717
(C2xC10):6(C3xQ8) = C2xC6xDic10φ: C3xQ8/C12C2 ⊆ Aut C2xC10480(C2xC10):6(C3xQ8)480,1135

Non-split extensions G=N.Q with N=C2xC10 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC10).(C3xQ8) = C3xC20.53D4φ: C3xQ8/C6C22 ⊆ Aut C2xC102404(C2xC10).(C3xQ8)480,100
(C2xC10).2(C3xQ8) = C15xC8.C4φ: C3xQ8/C12C2 ⊆ Aut C2xC102402(C2xC10).2(C3xQ8)480,211
(C2xC10).3(C3xQ8) = C3xC40.6C4φ: C3xQ8/C12C2 ⊆ Aut C2xC102402(C2xC10).3(C3xQ8)480,97
(C2xC10).4(C3xQ8) = C3xC10.10C42φ: C3xQ8/C12C2 ⊆ Aut C2xC10480(C2xC10).4(C3xQ8)480,109
(C2xC10).5(C3xQ8) = C6xC10.D4φ: C3xQ8/C12C2 ⊆ Aut C2xC10480(C2xC10).5(C3xQ8)480,716
(C2xC10).6(C3xQ8) = C6xC4:Dic5φ: C3xQ8/C12C2 ⊆ Aut C2xC10480(C2xC10).6(C3xQ8)480,718
(C2xC10).7(C3xQ8) = C15xC2.C42central extension (φ=1)480(C2xC10).7(C3xQ8)480,198
(C2xC10).8(C3xQ8) = C4:C4xC30central extension (φ=1)480(C2xC10).8(C3xQ8)480,921

׿
x
:
Z
F
o
wr
Q
<