extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC10).(C3xQ8) = C3xC20.53D4 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).(C3xQ8) | 480,100 |
(C2xC10).2(C3xQ8) = C15xC8.C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC10 | 240 | 2 | (C2xC10).2(C3xQ8) | 480,211 |
(C2xC10).3(C3xQ8) = C3xC40.6C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC10 | 240 | 2 | (C2xC10).3(C3xQ8) | 480,97 |
(C2xC10).4(C3xQ8) = C3xC10.10C42 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).4(C3xQ8) | 480,109 |
(C2xC10).5(C3xQ8) = C6xC10.D4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).5(C3xQ8) | 480,716 |
(C2xC10).6(C3xQ8) = C6xC4:Dic5 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).6(C3xQ8) | 480,718 |
(C2xC10).7(C3xQ8) = C15xC2.C42 | central extension (φ=1) | 480 | | (C2xC10).7(C3xQ8) | 480,198 |
(C2xC10).8(C3xQ8) = C4:C4xC30 | central extension (φ=1) | 480 | | (C2xC10).8(C3xQ8) | 480,921 |