Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C2xA4

Direct product G=NxQ with N=C2xC10 and Q=C2xA4
dρLabelID
A4xC22xC10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C2xC10 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
(C2xC10):(C2xA4) = D5xC22:A4φ: C2xA4/C22C6 ⊆ Aut C2xC1060(C2xC10):(C2xA4)480,1203
(C2xC10):2(C2xA4) = C10xC22:A4φ: C2xA4/C23C3 ⊆ Aut C2xC1060(C2xC10):2(C2xA4)480,1209
(C2xC10):3(C2xA4) = C5xD4xA4φ: C2xA4/A4C2 ⊆ Aut C2xC10606(C2xC10):3(C2xA4)480,1127
(C2xC10):4(C2xA4) = A4xC5:D4φ: C2xA4/A4C2 ⊆ Aut C2xC10606(C2xC10):4(C2xA4)480,1045
(C2xC10):5(C2xA4) = C22xD5xA4φ: C2xA4/A4C2 ⊆ Aut C2xC1060(C2xC10):5(C2xA4)480,1202

Non-split extensions G=N.Q with N=C2xC10 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
(C2xC10).1(C2xA4) = C20:4D4:C3φ: C2xA4/C22C6 ⊆ Aut C2xC10606+(C2xC10).1(C2xA4)480,262
(C2xC10).2(C2xA4) = (C4xC20):C6φ: C2xA4/C22C6 ⊆ Aut C2xC10806(C2xC10).2(C2xA4)480,263
(C2xC10).3(C2xA4) = D5xC42:C3φ: C2xA4/C22C6 ⊆ Aut C2xC10606(C2xC10).3(C2xA4)480,264
(C2xC10).4(C2xA4) = (C22xD5):A4φ: C2xA4/C22C6 ⊆ Aut C2xC10406(C2xC10).4(C2xA4)480,268
(C2xC10).5(C2xA4) = C10xC42:C3φ: C2xA4/C23C3 ⊆ Aut C2xC10603(C2xC10).5(C2xA4)480,654
(C2xC10).6(C2xA4) = C5xC24:C6φ: C2xA4/C23C3 ⊆ Aut C2xC10406(C2xC10).6(C2xA4)480,656
(C2xC10).7(C2xA4) = C5xC42:C6φ: C2xA4/C23C3 ⊆ Aut C2xC10806(C2xC10).7(C2xA4)480,657
(C2xC10).8(C2xA4) = C5xC23.A4φ: C2xA4/C23C3 ⊆ Aut C2xC10606(C2xC10).8(C2xA4)480,658
(C2xC10).9(C2xA4) = C5xD4.A4φ: C2xA4/A4C2 ⊆ Aut C2xC10804(C2xC10).9(C2xA4)480,1132
(C2xC10).10(C2xA4) = Dic5xSL2(F3)φ: C2xA4/A4C2 ⊆ Aut C2xC10160(C2xC10).10(C2xA4)480,266
(C2xC10).11(C2xA4) = C2xDic5.A4φ: C2xA4/A4C2 ⊆ Aut C2xC10160(C2xC10).11(C2xA4)480,1038
(C2xC10).12(C2xA4) = C2xD5xSL2(F3)φ: C2xA4/A4C2 ⊆ Aut C2xC1080(C2xC10).12(C2xA4)480,1039
(C2xC10).13(C2xA4) = SL2(F3).11D10φ: C2xA4/A4C2 ⊆ Aut C2xC10804(C2xC10).13(C2xA4)480,1040
(C2xC10).14(C2xA4) = C2xA4xDic5φ: C2xA4/A4C2 ⊆ Aut C2xC10120(C2xC10).14(C2xA4)480,1044
(C2xC10).15(C2xA4) = C20xSL2(F3)central extension (φ=1)160(C2xC10).15(C2xA4)480,655
(C2xC10).16(C2xA4) = A4xC2xC20central extension (φ=1)120(C2xC10).16(C2xA4)480,1126
(C2xC10).17(C2xA4) = C2xC10xSL2(F3)central extension (φ=1)160(C2xC10).17(C2xA4)480,1128
(C2xC10).18(C2xA4) = C10xC4.A4central extension (φ=1)160(C2xC10).18(C2xA4)480,1130

׿
x
:
Z
F
o
wr
Q
<