Extensions 1→N→G→Q→1 with N=C15 and Q=M5(2)

Direct product G=NxQ with N=C15 and Q=M5(2)
dρLabelID
C15xM5(2)2402C15xM5(2)480,213

Semidirect products G=N:Q with N=C15 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C15:1M5(2) = C15:M5(2)φ: M5(2)/C4C2xC4 ⊆ Aut C152408C15:1M5(2)480,241
C15:2M5(2) = D30.C8φ: M5(2)/C4C2xC4 ⊆ Aut C152408C15:2M5(2)480,242
C15:3M5(2) = C120.C4φ: M5(2)/C8C4 ⊆ Aut C152404C15:3M5(2)480,295
C15:4M5(2) = C3xC8.F5φ: M5(2)/C8C4 ⊆ Aut C152404C15:4M5(2)480,270
C15:5M5(2) = C40.51D6φ: M5(2)/C8C22 ⊆ Aut C152404C15:5M5(2)480,10
C15:6M5(2) = C40.52D6φ: M5(2)/C8C22 ⊆ Aut C152404C15:6M5(2)480,11
C15:7M5(2) = D30.5C8φ: M5(2)/C8C22 ⊆ Aut C152404C15:7M5(2)480,12
C15:8M5(2) = C60.C8φ: M5(2)/C2xC4C4 ⊆ Aut C152404C15:8M5(2)480,303
C15:9M5(2) = C3xC20.C8φ: M5(2)/C2xC4C4 ⊆ Aut C152404C15:9M5(2)480,278
C15:10M5(2) = C80:S3φ: M5(2)/C16C2 ⊆ Aut C152402C15:10M5(2)480,158
C15:11M5(2) = C3xC80:C2φ: M5(2)/C16C2 ⊆ Aut C152402C15:11M5(2)480,76
C15:12M5(2) = C5xD6.C8φ: M5(2)/C16C2 ⊆ Aut C152402C15:12M5(2)480,117
C15:13M5(2) = C60.7C8φ: M5(2)/C2xC8C2 ⊆ Aut C152402C15:13M5(2)480,172
C15:14M5(2) = C3xC20.4C8φ: M5(2)/C2xC8C2 ⊆ Aut C152402C15:14M5(2)480,90
C15:15M5(2) = C5xC12.C8φ: M5(2)/C2xC8C2 ⊆ Aut C152402C15:15M5(2)480,131


׿
x
:
Z
F
o
wr
Q
<