Extensions 1→N→G→Q→1 with N=C5xDic3 and Q=C8

Direct product G=NxQ with N=C5xDic3 and Q=C8
dρLabelID
Dic3xC40480Dic3xC40480,132

Semidirect products G=N:Q with N=C5xDic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5xDic3):1C8 = Dic3xC5:C8φ: C8/C2C4 ⊆ Out C5xDic3480(C5xDic3):1C8480,244
(C5xDic3):2C8 = C30.4M4(2)φ: C8/C2C4 ⊆ Out C5xDic3480(C5xDic3):2C8480,252
(C5xDic3):3C8 = Dic3xC5:2C8φ: C8/C4C2 ⊆ Out C5xDic3480(C5xDic3):3C8480,26
(C5xDic3):4C8 = C60.15Q8φ: C8/C4C2 ⊆ Out C5xDic3480(C5xDic3):4C8480,60
(C5xDic3):5C8 = C5xDic3:C8φ: C8/C4C2 ⊆ Out C5xDic3480(C5xDic3):5C8480,133

Non-split extensions G=N.Q with N=C5xDic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5xDic3).1C8 = S3xC5:C16φ: C8/C2C4 ⊆ Out C5xDic32408(C5xDic3).1C8480,239
(C5xDic3).2C8 = C15:M5(2)φ: C8/C2C4 ⊆ Out C5xDic32408(C5xDic3).2C8480,241
(C5xDic3).3C8 = S3xC5:2C16φ: C8/C4C2 ⊆ Out C5xDic32404(C5xDic3).3C8480,8
(C5xDic3).4C8 = C40.52D6φ: C8/C4C2 ⊆ Out C5xDic32404(C5xDic3).4C8480,11
(C5xDic3).5C8 = C5xD6.C8φ: C8/C4C2 ⊆ Out C5xDic32402(C5xDic3).5C8480,117
(C5xDic3).6C8 = S3xC80φ: trivial image2402(C5xDic3).6C8480,116

׿
x
:
Z
F
o
wr
Q
<