Extensions 1→N→G→Q→1 with N=C10xDic3 and Q=C4

Direct product G=NxQ with N=C10xDic3 and Q=C4
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C10xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C10xDic3):1C4 = C15:8(C23:C4)φ: C4/C1C4 ⊆ Out C10xDic31204(C10xDic3):1C4480,72
(C10xDic3):2C4 = D10.20D12φ: C4/C1C4 ⊆ Out C10xDic3120(C10xDic3):2C4480,243
(C10xDic3):3C4 = D10.4D12φ: C4/C1C4 ⊆ Out C10xDic31208+(C10xDic3):3C4480,249
(C10xDic3):4C4 = C2xDic3xF5φ: C4/C1C4 ⊆ Out C10xDic3120(C10xDic3):4C4480,998
(C10xDic3):5C4 = C22:F5.S3φ: C4/C1C4 ⊆ Out C10xDic31208-(C10xDic3):5C4480,999
(C10xDic3):6C4 = C2xDic3:F5φ: C4/C1C4 ⊆ Out C10xDic3120(C10xDic3):6C4480,1001
(C10xDic3):7C4 = C5xC23.6D6φ: C4/C1C4 ⊆ Out C10xDic31204(C10xDic3):7C4480,125
(C10xDic3):8C4 = C30.24C42φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3):8C4480,70
(C10xDic3):9C4 = C2xDic3xDic5φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3):9C4480,603
(C10xDic3):10C4 = C23.26(S3xD5)φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3):10C4480,605
(C10xDic3):11C4 = C2xC6.Dic10φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3):11C4480,621
(C10xDic3):12C4 = C5xC6.C42φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3):12C4480,150
(C10xDic3):13C4 = C5xC23.16D6φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3):13C4480,756
(C10xDic3):14C4 = C10xDic3:C4φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3):14C4480,802

Non-split extensions G=N.Q with N=C10xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C10xDic3).1C4 = C60.54D4φ: C4/C1C4 ⊆ Out C10xDic32404(C10xDic3).1C4480,38
(C10xDic3).2C4 = Dic3xC5:C8φ: C4/C1C4 ⊆ Out C10xDic3480(C10xDic3).2C4480,244
(C10xDic3).3C4 = C30.M4(2)φ: C4/C1C4 ⊆ Out C10xDic3480(C10xDic3).3C4480,245
(C10xDic3).4C4 = D30:C8φ: C4/C1C4 ⊆ Out C10xDic3240(C10xDic3).4C4480,247
(C10xDic3).5C4 = Dic5.4D12φ: C4/C1C4 ⊆ Out C10xDic32408-(C10xDic3).5C4480,251
(C10xDic3).6C4 = C30.4M4(2)φ: C4/C1C4 ⊆ Out C10xDic3480(C10xDic3).6C4480,252
(C10xDic3).7C4 = Dic15:C8φ: C4/C1C4 ⊆ Out C10xDic3480(C10xDic3).7C4480,253
(C10xDic3).8C4 = C2xD15:C8φ: C4/C1C4 ⊆ Out C10xDic3240(C10xDic3).8C4480,1006
(C10xDic3).9C4 = D15:2M4(2)φ: C4/C1C4 ⊆ Out C10xDic31208+(C10xDic3).9C4480,1007
(C10xDic3).10C4 = C2xDic3.F5φ: C4/C1C4 ⊆ Out C10xDic3240(C10xDic3).10C4480,1009
(C10xDic3).11C4 = C5xC12.47D4φ: C4/C1C4 ⊆ Out C10xDic32404(C10xDic3).11C4480,143
(C10xDic3).12C4 = Dic3xC5:2C8φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3).12C4480,26
(C10xDic3).13C4 = C30.22C42φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3).13C4480,29
(C10xDic3).14C4 = C60.94D4φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3).14C4480,32
(C10xDic3).15C4 = C60.15Q8φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3).15C4480,60
(C10xDic3).16C4 = C2xS3xC5:2C8φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3).16C4480,361
(C10xDic3).17C4 = S3xC4.Dic5φ: C4/C2C2 ⊆ Out C10xDic31204(C10xDic3).17C4480,363
(C10xDic3).18C4 = C2xD6.Dic5φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3).18C4480,370
(C10xDic3).19C4 = C5xDic3:C8φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3).19C4480,133
(C10xDic3).20C4 = C5xC24:C4φ: C4/C2C2 ⊆ Out C10xDic3480(C10xDic3).20C4480,134
(C10xDic3).21C4 = C5xD6:C8φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3).21C4480,139
(C10xDic3).22C4 = C10xC8:S3φ: C4/C2C2 ⊆ Out C10xDic3240(C10xDic3).22C4480,779
(C10xDic3).23C4 = C5xS3xM4(2)φ: C4/C2C2 ⊆ Out C10xDic31204(C10xDic3).23C4480,785
(C10xDic3).24C4 = Dic3xC40φ: trivial image480(C10xDic3).24C4480,132
(C10xDic3).25C4 = S3xC2xC40φ: trivial image240(C10xDic3).25C4480,778

׿
x
:
Z
F
o
wr
Q
<