Extensions 1→N→G→Q→1 with N=C10 and Q=C3xM4(2)

Direct product G=NxQ with N=C10 and Q=C3xM4(2)
dρLabelID
M4(2)xC30240M4(2)xC30480,935

Semidirect products G=N:Q with N=C10 and Q=C3xM4(2)
extensionφ:Q→Aut NdρLabelID
C10:1(C3xM4(2)) = C6xC4.F5φ: C3xM4(2)/C12C4 ⊆ Aut C10240C10:1(C3xM4(2))480,1048
C10:2(C3xM4(2)) = C6xC22.F5φ: C3xM4(2)/C2xC6C4 ⊆ Aut C10240C10:2(C3xM4(2))480,1058
C10:3(C3xM4(2)) = C6xC8:D5φ: C3xM4(2)/C24C2 ⊆ Aut C10240C10:3(C3xM4(2))480,693
C10:4(C3xM4(2)) = C6xC4.Dic5φ: C3xM4(2)/C2xC12C2 ⊆ Aut C10240C10:4(C3xM4(2))480,714

Non-split extensions G=N.Q with N=C10 and Q=C3xM4(2)
extensionφ:Q→Aut NdρLabelID
C10.1(C3xM4(2)) = C3xC20:C8φ: C3xM4(2)/C12C4 ⊆ Aut C10480C10.1(C3xM4(2))480,281
C10.2(C3xM4(2)) = C3xD10:C8φ: C3xM4(2)/C12C4 ⊆ Aut C10240C10.2(C3xM4(2))480,283
C10.3(C3xM4(2)) = C3xC10.C42φ: C3xM4(2)/C2xC6C4 ⊆ Aut C10480C10.3(C3xM4(2))480,282
C10.4(C3xM4(2)) = C3xDic5:C8φ: C3xM4(2)/C2xC6C4 ⊆ Aut C10480C10.4(C3xM4(2))480,284
C10.5(C3xM4(2)) = C3xC23.2F5φ: C3xM4(2)/C2xC6C4 ⊆ Aut C10240C10.5(C3xM4(2))480,292
C10.6(C3xM4(2)) = C3xC20.8Q8φ: C3xM4(2)/C24C2 ⊆ Aut C10480C10.6(C3xM4(2))480,92
C10.7(C3xM4(2)) = C3xC40:8C4φ: C3xM4(2)/C24C2 ⊆ Aut C10480C10.7(C3xM4(2))480,93
C10.8(C3xM4(2)) = C3xD10:1C8φ: C3xM4(2)/C24C2 ⊆ Aut C10240C10.8(C3xM4(2))480,98
C10.9(C3xM4(2)) = C3xC42.D5φ: C3xM4(2)/C2xC12C2 ⊆ Aut C10480C10.9(C3xM4(2))480,81
C10.10(C3xM4(2)) = C3xC20:3C8φ: C3xM4(2)/C2xC12C2 ⊆ Aut C10480C10.10(C3xM4(2))480,82
C10.11(C3xM4(2)) = C3xC20.55D4φ: C3xM4(2)/C2xC12C2 ⊆ Aut C10240C10.11(C3xM4(2))480,108
C10.12(C3xM4(2)) = C15xC8:C4central extension (φ=1)480C10.12(C3xM4(2))480,200
C10.13(C3xM4(2)) = C15xC22:C8central extension (φ=1)240C10.13(C3xM4(2))480,201
C10.14(C3xM4(2)) = C15xC4:C8central extension (φ=1)480C10.14(C3xM4(2))480,208

׿
x
:
Z
F
o
wr
Q
<