Extensions 1→N→G→Q→1 with N=C3xC5:2C16 and Q=C2

Direct product G=NxQ with N=C3xC5:2C16 and Q=C2
dρLabelID
C6xC5:2C16480C6xC5:2C16480,89

Semidirect products G=N:Q with N=C3xC5:2C16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC5:2C16):1C2 = C5:D48φ: C2/C1C2 ⊆ Out C3xC5:2C162404+(C3xC5:2C16):1C2480,15
(C3xC5:2C16):2C2 = D24.D5φ: C2/C1C2 ⊆ Out C3xC5:2C162404-(C3xC5:2C16):2C2480,20
(C3xC5:2C16):3C2 = Dic12:D5φ: C2/C1C2 ⊆ Out C3xC5:2C162404+(C3xC5:2C16):3C2480,21
(C3xC5:2C16):4C2 = C3xC5:D16φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):4C2480,104
(C3xC5:2C16):5C2 = C3xD8.D5φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):5C2480,105
(C3xC5:2C16):6C2 = C3xC5:SD32φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):6C2480,106
(C3xC5:2C16):7C2 = S3xC5:2C16φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):7C2480,8
(C3xC5:2C16):8C2 = D15:2C16φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):8C2480,9
(C3xC5:2C16):9C2 = C40.52D6φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):9C2480,11
(C3xC5:2C16):10C2 = D30.5C8φ: C2/C1C2 ⊆ Out C3xC5:2C162404(C3xC5:2C16):10C2480,12
(C3xC5:2C16):11C2 = C3xC80:C2φ: C2/C1C2 ⊆ Out C3xC5:2C162402(C3xC5:2C16):11C2480,76
(C3xC5:2C16):12C2 = C3xC20.4C8φ: C2/C1C2 ⊆ Out C3xC5:2C162402(C3xC5:2C16):12C2480,90
(C3xC5:2C16):13C2 = D5xC48φ: trivial image2402(C3xC5:2C16):13C2480,75

Non-split extensions G=N.Q with N=C3xC5:2C16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC5:2C16).1C2 = C5:Dic24φ: C2/C1C2 ⊆ Out C3xC5:2C164804-(C3xC5:2C16).1C2480,24
(C3xC5:2C16).2C2 = C3xC5:Q32φ: C2/C1C2 ⊆ Out C3xC5:2C164804(C3xC5:2C16).2C2480,107
(C3xC5:2C16).3C2 = C15:C32φ: C2/C1C2 ⊆ Out C3xC5:2C164804(C3xC5:2C16).3C2480,6
(C3xC5:2C16).4C2 = C3xC5:C32φ: C2/C1C2 ⊆ Out C3xC5:2C164804(C3xC5:2C16).4C2480,5

׿
x
:
Z
F
o
wr
Q
<