Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC60

Direct product G=NxQ with N=C4 and Q=C2xC60
dρLabelID
C2xC4xC60480C2xC4xC60480,919

Semidirect products G=N:Q with N=C4 and Q=C2xC60
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC60) = D4xC60φ: C2xC60/C60C2 ⊆ Aut C4240C4:1(C2xC60)480,923
C4:2(C2xC60) = C4:C4xC30φ: C2xC60/C2xC30C2 ⊆ Aut C4480C4:2(C2xC60)480,921

Non-split extensions G=N.Q with N=C4 and Q=C2xC60
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC60) = C15xD4:C4φ: C2xC60/C60C2 ⊆ Aut C4240C4.1(C2xC60)480,205
C4.2(C2xC60) = C15xQ8:C4φ: C2xC60/C60C2 ⊆ Aut C4480C4.2(C2xC60)480,206
C4.3(C2xC60) = C15xC4wrC2φ: C2xC60/C60C2 ⊆ Aut C41202C4.3(C2xC60)480,207
C4.4(C2xC60) = Q8xC60φ: C2xC60/C60C2 ⊆ Aut C4480C4.4(C2xC60)480,924
C4.5(C2xC60) = C15xC8oD4φ: C2xC60/C60C2 ⊆ Aut C42402C4.5(C2xC60)480,936
C4.6(C2xC60) = C15xC4.Q8φ: C2xC60/C2xC30C2 ⊆ Aut C4480C4.6(C2xC60)480,209
C4.7(C2xC60) = C15xC2.D8φ: C2xC60/C2xC30C2 ⊆ Aut C4480C4.7(C2xC60)480,210
C4.8(C2xC60) = C15xC8.C4φ: C2xC60/C2xC30C2 ⊆ Aut C42402C4.8(C2xC60)480,211
C4.9(C2xC60) = C15xC42:C2φ: C2xC60/C2xC30C2 ⊆ Aut C4240C4.9(C2xC60)480,922
C4.10(C2xC60) = M4(2)xC30φ: C2xC60/C2xC30C2 ⊆ Aut C4240C4.10(C2xC60)480,935
C4.11(C2xC60) = C15xC8:C4central extension (φ=1)480C4.11(C2xC60)480,200
C4.12(C2xC60) = C15xM5(2)central extension (φ=1)2402C4.12(C2xC60)480,213

׿
x
:
Z
F
o
wr
Q
<