Extensions 1→N→G→Q→1 with N=C6 and Q=C4:F5

Direct product G=NxQ with N=C6 and Q=C4:F5
dρLabelID
C6xC4:F5120C6xC4:F5480,1051

Semidirect products G=N:Q with N=C6 and Q=C4:F5
extensionφ:Q→Aut NdρLabelID
C6:1(C4:F5) = C2xC60:C4φ: C4:F5/C4xD5C2 ⊆ Aut C6120C6:1(C4:F5)480,1064
C6:2(C4:F5) = C2xDic3:F5φ: C4:F5/C2xF5C2 ⊆ Aut C6120C6:2(C4:F5)480,1001

Non-split extensions G=N.Q with N=C6 and Q=C4:F5
extensionφ:Q→Aut NdρLabelID
C6.1(C4:F5) = C120:C4φ: C4:F5/C4xD5C2 ⊆ Aut C61204C6.1(C4:F5)480,298
C6.2(C4:F5) = D5.D24φ: C4:F5/C4xD5C2 ⊆ Aut C61204C6.2(C4:F5)480,299
C6.3(C4:F5) = C40.Dic3φ: C4:F5/C4xD5C2 ⊆ Aut C62404C6.3(C4:F5)480,300
C6.4(C4:F5) = C24.1F5φ: C4:F5/C4xD5C2 ⊆ Aut C62404C6.4(C4:F5)480,301
C6.5(C4:F5) = C60:C8φ: C4:F5/C4xD5C2 ⊆ Aut C6480C6.5(C4:F5)480,306
C6.6(C4:F5) = Dic5.13D12φ: C4:F5/C4xD5C2 ⊆ Aut C6480C6.6(C4:F5)480,309
C6.7(C4:F5) = D10.10D12φ: C4:F5/C4xD5C2 ⊆ Aut C6120C6.7(C4:F5)480,311
C6.8(C4:F5) = Dic5.Dic6φ: C4:F5/C2xF5C2 ⊆ Aut C61208C6.8(C4:F5)480,235
C6.9(C4:F5) = Dic5.4Dic6φ: C4:F5/C2xF5C2 ⊆ Aut C61208C6.9(C4:F5)480,236
C6.10(C4:F5) = D10.Dic6φ: C4:F5/C2xF5C2 ⊆ Aut C62408C6.10(C4:F5)480,237
C6.11(C4:F5) = D10.2Dic6φ: C4:F5/C2xF5C2 ⊆ Aut C62408C6.11(C4:F5)480,238
C6.12(C4:F5) = D10.20D12φ: C4:F5/C2xF5C2 ⊆ Aut C6120C6.12(C4:F5)480,243
C6.13(C4:F5) = C30.4M4(2)φ: C4:F5/C2xF5C2 ⊆ Aut C6480C6.13(C4:F5)480,252
C6.14(C4:F5) = Dic15:C8φ: C4:F5/C2xF5C2 ⊆ Aut C6480C6.14(C4:F5)480,253
C6.15(C4:F5) = C3xC40:C4central extension (φ=1)1204C6.15(C4:F5)480,273
C6.16(C4:F5) = C3xD5.D8central extension (φ=1)1204C6.16(C4:F5)480,274
C6.17(C4:F5) = C3xC40.C4central extension (φ=1)2404C6.17(C4:F5)480,275
C6.18(C4:F5) = C3xD10.Q8central extension (φ=1)2404C6.18(C4:F5)480,276
C6.19(C4:F5) = C3xC20:C8central extension (φ=1)480C6.19(C4:F5)480,281
C6.20(C4:F5) = C3xDic5:C8central extension (φ=1)480C6.20(C4:F5)480,284
C6.21(C4:F5) = C3xD10.3Q8central extension (φ=1)120C6.21(C4:F5)480,286

׿
x
:
Z
F
o
wr
Q
<