Extensions 1→N→G→Q→1 with N=C4 and Q=D4xC15

Direct product G=NxQ with N=C4 and Q=D4xC15
dρLabelID
D4xC60240D4xC60480,923

Semidirect products G=N:Q with N=C4 and Q=D4xC15
extensionφ:Q→Aut NdρLabelID
C4:1(D4xC15) = C15xC4:1D4φ: D4xC15/C60C2 ⊆ Aut C4240C4:1(D4xC15)480,932
C4:2(D4xC15) = C15xC4:D4φ: D4xC15/C2xC30C2 ⊆ Aut C4240C4:2(D4xC15)480,926

Non-split extensions G=N.Q with N=C4 and Q=D4xC15
extensionφ:Q→Aut NdρLabelID
C4.1(D4xC15) = C15xD16φ: D4xC15/C60C2 ⊆ Aut C42402C4.1(D4xC15)480,214
C4.2(D4xC15) = C15xSD32φ: D4xC15/C60C2 ⊆ Aut C42402C4.2(D4xC15)480,215
C4.3(D4xC15) = C15xQ32φ: D4xC15/C60C2 ⊆ Aut C44802C4.3(D4xC15)480,216
C4.4(D4xC15) = C15xC4.4D4φ: D4xC15/C60C2 ⊆ Aut C4240C4.4(D4xC15)480,929
C4.5(D4xC15) = C15xC4:Q8φ: D4xC15/C60C2 ⊆ Aut C4480C4.5(D4xC15)480,933
C4.6(D4xC15) = D8xC30φ: D4xC15/C60C2 ⊆ Aut C4240C4.6(D4xC15)480,937
C4.7(D4xC15) = SD16xC30φ: D4xC15/C60C2 ⊆ Aut C4240C4.7(D4xC15)480,938
C4.8(D4xC15) = Q16xC30φ: D4xC15/C60C2 ⊆ Aut C4480C4.8(D4xC15)480,939
C4.9(D4xC15) = C15xC4.D4φ: D4xC15/C2xC30C2 ⊆ Aut C41204C4.9(D4xC15)480,203
C4.10(D4xC15) = C15xC4.10D4φ: D4xC15/C2xC30C2 ⊆ Aut C42404C4.10(D4xC15)480,204
C4.11(D4xC15) = C15xD4:C4φ: D4xC15/C2xC30C2 ⊆ Aut C4240C4.11(D4xC15)480,205
C4.12(D4xC15) = C15xQ8:C4φ: D4xC15/C2xC30C2 ⊆ Aut C4480C4.12(D4xC15)480,206
C4.13(D4xC15) = C15xC22:Q8φ: D4xC15/C2xC30C2 ⊆ Aut C4240C4.13(D4xC15)480,927
C4.14(D4xC15) = C15xC8:C22φ: D4xC15/C2xC30C2 ⊆ Aut C41204C4.14(D4xC15)480,941
C4.15(D4xC15) = C15xC8.C22φ: D4xC15/C2xC30C2 ⊆ Aut C42404C4.15(D4xC15)480,942
C4.16(D4xC15) = C15xC22:C8central extension (φ=1)240C4.16(D4xC15)480,201
C4.17(D4xC15) = C15xC4wrC2central extension (φ=1)1202C4.17(D4xC15)480,207
C4.18(D4xC15) = C15xC4:C8central extension (φ=1)480C4.18(D4xC15)480,208
C4.19(D4xC15) = C15xC8.C4central extension (φ=1)2402C4.19(D4xC15)480,211
C4.20(D4xC15) = C15xC4oD8central extension (φ=1)2402C4.20(D4xC15)480,940

׿
x
:
Z
F
o
wr
Q
<