Extensions 1→N→G→Q→1 with N=C5 and Q=C4xC3:D4

Direct product G=NxQ with N=C5 and Q=C4xC3:D4
dρLabelID
C20xC3:D4240C20xC3:D4480,807

Semidirect products G=N:Q with N=C5 and Q=C4xC3:D4
extensionφ:Q→Aut NdρLabelID
C5:(C4xC3:D4) = F5xC3:D4φ: C4xC3:D4/C3:D4C4 ⊆ Aut C5608C5:(C4xC3:D4)480,1010
C5:2(C4xC3:D4) = C4xC3:D20φ: C4xC3:D4/C4xDic3C2 ⊆ Aut C5240C5:2(C4xC3:D4)480,519
C5:3(C4xC3:D4) = C15:20(C4xD4)φ: C4xC3:D4/Dic3:C4C2 ⊆ Aut C5240C5:3(C4xC3:D4)480,520
C5:4(C4xC3:D4) = D6:(C4xD5)φ: C4xC3:D4/D6:C4C2 ⊆ Aut C5240C5:4(C4xC3:D4)480,516
C5:5(C4xC3:D4) = C15:26(C4xD4)φ: C4xC3:D4/C6.D4C2 ⊆ Aut C5240C5:5(C4xC3:D4)480,628
C5:6(C4xC3:D4) = C4xC15:D4φ: C4xC3:D4/S3xC2xC4C2 ⊆ Aut C5240C5:6(C4xC3:D4)480,515
C5:7(C4xC3:D4) = Dic5xC3:D4φ: C4xC3:D4/C2xC3:D4C2 ⊆ Aut C5240C5:7(C4xC3:D4)480,627
C5:8(C4xC3:D4) = C4xC15:7D4φ: C4xC3:D4/C22xC12C2 ⊆ Aut C5240C5:8(C4xC3:D4)480,893


׿
x
:
Z
F
o
wr
Q
<